3 Fig. 3 shows a triangle PQR . The vector \(\overrightarrow { \mathrm { PQ } }\) is \(\mathbf { i } + 7 \mathbf { j }\) and the vector \(\overrightarrow { \mathrm { QR } }\) is \(4 \mathbf { i } - 12 \mathbf { j }\).
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{a1b6c827-7d74-4527-9b60-58872e3d5ef7-3_412_234_1736_244}
\captionsetup{labelformat=empty}
\caption{Fig. 3}
\end{figure}
- Show that the triangle PQR is isosceles.
The point P has position vector \(- 3 \mathbf { i } - \mathbf { j }\). The point S is added so that PQRS is a parallelogram.
- Find the position vector of S .