Questions — OCR (4619 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR FP2 2008 June Q9
12 marks
9
  1. Prove that \(\int _ { 0 } ^ { N } \ln ( 1 + x ) \mathrm { d } x = ( N + 1 ) \ln ( N + 1 ) - N\), where \(N\) is a positive constant.

  2. \includegraphics[max width=\textwidth, alt={}, center]{63a316f6-1c18-4224-930f-0b58112c9f71-4_616_1261_406_482} The diagram shows the curve \(y = \ln ( 1 + x )\), for \(0 \leqslant x \leqslant 70\), together with a set of rectangles of unit width.
    (a) By considering the areas of these rectangles, explain why $$\ln 2 + \ln 3 + \ln 4 + \ldots + \ln 70 < \int _ { 0 } ^ { 70 } \ln ( 1 + x ) d x$$ (b) By considering the areas of another set of rectangles, show that $$\ln 2 + \ln 3 + \ln 4 + \ldots + \ln 70 > \int _ { 0 } ^ { 69 } \ln ( 1 + x ) d x$$ (c) Hence find bounds between which \(\ln ( 70 ! )\) lies. Give the answers correct to 1 decimal place.
OCR FP2 2011 June Q1
5 marks Moderate -0.3
1 Express \(\frac { 2 x + 3 } { ( x + 3 ) \left( x ^ { 2 } + 9 \right) }\) in partial fractions.
OCR FP2 2011 June Q2
7 marks Standard +0.8
2 A curve has equation \(y = \frac { x ^ { 2 } - 6 x - 5 } { x - 2 }\).
  1. Find the equations of the asymptotes.
  2. Show that \(y\) can take all real values.
OCR FP2 2011 June Q3
8 marks Standard +0.3
3 It is given that \(\mathrm { F } ( x ) = 2 + \ln x\). The iteration \(x _ { n + 1 } = \mathrm { F } \left( x _ { n } \right)\) is to be used to find a root, \(\alpha\), of the equation \(x = 2 + \ln x\).
  1. Taking \(x _ { 1 } = 3.1\), find \(x _ { 2 }\) and \(x _ { 3 }\), giving your answers correct to 5 decimal places.
  2. The error \(e _ { n }\) is defined by \(e _ { n } = \alpha - x _ { n }\). Given that \(\alpha = 3.14619\), correct to 5 decimal places, use the values of \(e _ { 2 }\) and \(e _ { 3 }\) to make an estimate of \(\mathrm { F } ^ { \prime } ( \alpha )\) correct to 3 decimal places. State the true value of \(\mathrm { F } ^ { \prime } ( \alpha )\) correct to 4 decimal places.
  3. Illustrate the iteration by drawing a sketch of \(y = x\) and \(y = \mathrm { F } ( x )\), showing how the values of \(x _ { n }\) approach \(\alpha\). State whether the convergence is of the 'staircase' or 'cobweb' type.
OCR FP2 2011 June Q4
9 marks Challenging +1.2
4 A curve \(C\) has the cartesian equation \(x ^ { 3 } + y ^ { 3 } = a x y\), where \(x \geqslant 0 , y \geqslant 0\) and \(a > 0\).
  1. Express the polar equation of \(C\) in the form \(r = \mathrm { f } ( \theta )\) and state the limits between which \(\theta\) lies. The line \(\theta = \alpha\) is a line of symmetry of \(C\).
  2. Find and simplify an expression for \(\mathrm { f } \left( \frac { 1 } { 2 } \pi - \theta \right)\) and hence explain why \(\alpha = \frac { 1 } { 4 } \pi\).
  3. Find the value of \(r\) when \(\theta = \frac { 1 } { 4 } \pi\).
  4. Sketch the curve \(C\).
OCR FP2 2011 June Q5
12 marks Standard +0.8
5
  1. Prove that, if \(y = \sin ^ { - 1 } x\), then \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { 1 } { \sqrt { 1 - x ^ { 2 } } }\).
  2. Find the Maclaurin series for \(\sin ^ { - 1 } x\), up to and including the term in \(x ^ { 3 }\).
  3. Use the result of part (ii) and the Maclaurin series for \(\ln ( 1 + x )\) to find the Maclaurin series for \(\left( \sin ^ { - 1 } x \right) \ln ( 1 + x )\), up to and including the term in \(x ^ { 4 }\).
OCR FP2 2011 June Q6
10 marks Challenging +1.2
6 It is given that \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } ( 1 - x ) ^ { \frac { 3 } { 2 } } \mathrm {~d} x\), for \(n \geqslant 0\).
  1. Show that \(I _ { n } = \frac { 2 n } { 2 n + 5 } I _ { n - 1 }\), for \(n \geqslant 1\).
  2. Hence find the exact value of \(I _ { 3 }\).
OCR FP2 2011 June Q7
10 marks Standard +0.8
7
  1. Sketch the graph of \(y = \tanh x\) and state the value of the gradient when \(x = 0\). On the same axes, sketch the graph of \(y = \tanh ^ { - 1 } x\). Label each curve and give the equations of the asymptotes.
  2. Find \(\int _ { 0 } ^ { k } \tanh x \mathrm {~d} x\), where \(k > 0\).
  3. Deduce, or show otherwise, that \(\int _ { 0 } ^ { \tanh k } \tanh ^ { - 1 } x \mathrm {~d} x = k \tanh k - \ln ( \cosh k )\).
OCR FP2 2011 June Q8
11 marks Challenging +1.8
8
  1. Use the substitution \(x = \cosh ^ { 2 } u\) to find \(\int \sqrt { \frac { x } { x - 1 } } \mathrm {~d} x\), giving your answer in the form \(\mathrm { f } ( x ) + \ln ( \mathrm { g } ( x ) )\).
    \includegraphics[max width=\textwidth, alt={}, center]{d25d17c4-a87c-4dcf-900c-400086af6610-3_693_1041_927_593}
  2. Hence calculate the exact area of the region between the curve \(y = \sqrt { \frac { x } { x - 1 } }\), the \(x\)-axis and the lines \(x = 1\) and \(x = 4\) (see diagram).
  3. What can you say about the volume of the solid of revolution obtained when the region defined in part (ii) is rotated completely about the \(x\)-axis? Justify your answer.
OCR FP2 2016 June Q1
9 marks Standard +0.8
1
  1. By first expanding \(\left( \mathrm { e } ^ { x } + \mathrm { e } ^ { - x } \right) ^ { 3 }\), or otherwise, show that \(\cosh 3 x \equiv 4 \cosh ^ { 3 } x - 3 \cosh x\).
  2. Solve the equation \(\cosh 3 x = 6 \cosh x\), giving your answers in exact logarithmic form.
OCR FP2 2016 June Q2
6 marks Challenging +1.2
2 It is given that \(\mathrm { f } ( x ) = \frac { x ( x - 1 ) } { ( x + 1 ) \left( x ^ { 2 } + 1 \right) }\). Express \(\mathrm { f } ( x )\) in partial fractions and hence find the exact value of \(\int _ { 0 } ^ { 1 } \mathrm { f } ( x ) \mathrm { d } x\).
OCR FP2 2016 June Q3
5 marks Challenging +1.2
3 The diagram shows the curve \(y = \mathrm { f } ( x )\). Points \(A , B , C\) and \(D\) on the curve have coordinates ( \(- 1,0 ) , ( 2,0 )\), \(( 5,0 )\) and \(( 0,2 )\) respectively.
\includegraphics[max width=\textwidth, alt={}, center]{a31997f4-7890-42c1-9725-1b7058e8741f-2_593_1221_1041_406} On the copy of this diagram in the Printed Answer Book, sketch the curve \(y ^ { 2 } = \mathrm { f } ( x )\), giving the coordinates of the points where the curve crosses the axes.
OCR FP2 2016 June Q4
12 marks Standard +0.8
4 You are given the equation \(( 2 x - 1 ) ^ { 2 } - \mathrm { e } ^ { x } = 0\).
  1. Verify that 0 is a root of the equation. There are also two other roots, \(\alpha\) and \(\beta\), where \(0 < \alpha < \beta\).
  2. The iterative formula \(x _ { r + 1 } = \ln \left( 2 x _ { r } - 1 \right) ^ { 2 }\) is to be used to find a root of the equation.
    (a) Sketch the line \(y = x\) and the curve \(y = \ln ( 2 x - 1 ) ^ { 2 }\) on the same axes, showing the roots \(0 , \alpha\) and \(\beta\).
    (b) By drawing a 'staircase' diagram on your sketch, starting with a value of \(x\) that is between \(\alpha\) and \(\beta\), show that this iteration does not converge to \(\alpha\).
    (c) Using this iterative formula with \(x _ { 1 } = 3.75\), find the value of \(\beta\) correct to 3 decimal places.
  3. Using the Newton-Raphson method with \(x _ { 1 } = 1.6\), find the root \(\alpha\) of the equation \(( 2 x - 1 ) ^ { 2 } - \mathrm { e } ^ { x } = 0\) correct to 5 significant figures. Show the result of each iteration.
OCR FP2 2016 June Q5
9 marks Standard +0.8
5 It is given that \(y = \tan ^ { - 1 } 2 x\).
  1. Find \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) and show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 4 x \left( \frac { \mathrm {~d} y } { \mathrm {~d} x } \right) ^ { 2 } = 0\).
  2. Find the Maclaurin series for \(y\) up to and including the term in \(x ^ { 3 }\). Show all your working.
  3. The result in part (ii), together with the value \(x = \frac { 1 } { 2 }\), is used to find an estimate for \(\pi\). Show that this estimate is only correct to 1 significant figure.
OCR FP2 2016 June Q6
10 marks Standard +0.8
6 The equation of a curve in polar coordinates is \(r = \sin 5 \theta\) for \(0 \leqslant \theta \leqslant \frac { 1 } { 5 } \pi\).
  1. Sketch the curve and write down the equations of the tangents at the pole.
  2. The line of symmetry meets the curve at the pole and at one other point \(A\). Find the equation of the line of symmetry and the cartesian coordinates of \(A\).
  3. Find the area of the region enclosed by this curve.
OCR FP2 2016 June Q7
9 marks Challenging +1.2
7
  1. By using a set of rectangles of unit width to approximate an area under the curve \(y = \frac { 1 } { x }\), show that \(\sum _ { x = 1 } ^ { \infty } \frac { 1 } { x }\) is infinite.
  2. By using a set of rectangles of unit width to approximate an area under the curve \(y = \frac { 1 } { x ^ { 2 } }\), find an upper limit for the series \(\sum _ { x = 1 } ^ { \infty } \frac { 1 } { x ^ { 2 } }\).
OCR FP2 2016 June Q8
12 marks Challenging +1.8
8 It is given that \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \sec ^ { n } x \mathrm {~d} x\) where \(n\) is a positive integer.
  1. By writing \(\sec ^ { n } x = \sec ^ { n - 2 } x \sec ^ { 2 } x\), or otherwise, show that $$( n - 1 ) I _ { n } = ( \sqrt { 2 } ) ^ { n - 2 } + ( n - 2 ) I _ { n - 2 } \text { for } n > 1 .$$
  2. Show that \(I _ { 8 } = \frac { 96 } { 35 }\).
  3. Prove by induction that \(I _ { 2 n }\) is rational for all values of \(n > 1\). \section*{END OF QUESTION PAPER}
OCR FP2 Specimen Q1
6 marks Standard +0.3
1
  1. Starting from the definition of \(\cosh x\) in terms of \(\mathrm { e } ^ { x }\), show that \(\cosh 2 x = 2 \cosh ^ { 2 } x - 1\).
  2. Given that \(\cosh 2 x = k\), where \(k > 1\), express each of \(\cosh x\) and \(\sinh x\) in terms of \(k\).
OCR FP2 Specimen Q2
7 marks Challenging +1.2
2
\includegraphics[max width=\textwidth, alt={}, center]{e4e1c424-8dd5-4d18-9950-e902de0301b0-2_728_951_486_534} The diagram shows the graph of $$y = \frac { 2 x ^ { 2 } + 3 x + 3 } { x + 1 }$$
  1. Find the equations of the asymptotes of the curve.
  2. Prove that the values of \(y\) between which there are no points on the curve are - 5 and 3 .
OCR FP2 Specimen Q3
7 marks Standard +0.3
3
  1. Find the first three terms of the Maclaurin series for \(\ln ( 2 + x )\).
  2. Write down the first three terms of the series for \(\ln ( 2 - x )\), and hence show that, if \(x\) is small, then $$\ln \left( \frac { 2 + x } { 2 - x } \right) \approx x$$
OCR FP2 Specimen Q4
8 marks Standard +0.8
4 The equation of a curve, in polar coordinates, is $$r = 2 \cos 2 \theta \quad ( - \pi < \theta \leqslant \pi ) .$$
  1. Find the values of \(\theta\) which give the directions of the tangents at the pole. One loop of the curve is shown in the diagram.
    \includegraphics[max width=\textwidth, alt={}, center]{e4e1c424-8dd5-4d18-9950-e902de0301b0-3_362_720_653_708}
  2. Find the exact value of the area of the region enclosed by the loop.
OCR FP2 Specimen Q5
8 marks Challenging +1.2
5
\includegraphics[max width=\textwidth, alt={}, center]{e4e1c424-8dd5-4d18-9950-e902de0301b0-3_444_999_1258_539} The diagram shows the curve \(y = \frac { 1 } { x + 1 }\) together with four rectangles of unit width.
  1. Explain how the diagram shows that $$\frac { 1 } { 2 } + \frac { 1 } { 3 } + \frac { 1 } { 4 } + \frac { 1 } { 5 } < \int _ { 0 } ^ { 4 } \frac { 1 } { x + 1 } \mathrm {~d} x$$ The curve \(y = \frac { 1 } { x + 2 }\) passes through the top left-hand corner of each of the four rectangles shown.
  2. By considering the rectangles in relation to this curve, write down a second inequality involving \(\frac { 1 } { 2 } + \frac { 1 } { 3 } + \frac { 1 } { 4 } + \frac { 1 } { 5 }\) and a definite integral.
  3. By considering a suitable range of integration and corresponding rectangles, show that $$\ln ( 500.5 ) < \sum _ { r = 2 } ^ { 1000 } \frac { 1 } { r } < \ln ( 1000 ) .$$
OCR FP2 Specimen Q6
10 marks Challenging +1.2
6
  1. Given that \(I _ { n } = \int _ { 0 } ^ { 1 } x ^ { n } \sqrt { } ( 1 - x ) \mathrm { d } x\), prove that, for \(n \geqslant 1\), $$( 2 n + 3 ) I _ { n } = 2 n I _ { n - 1 } .$$
  2. Hence find the exact value of \(I _ { 2 }\).
OCR FP2 Specimen Q7
13 marks Standard +0.8
7 The curve with equation $$y = \frac { x } { \cosh x }$$ has one stationary point for \(x > 0\).
  1. Show that the \(x\)-coordinate of this stationary point satisfies the equation \(x \tanh x - 1 = 0\). The positive root of the equation \(x \tanh x - 1 = 0\) is denoted by \(\alpha\).
  2. Draw a sketch showing (for positive values of \(x\) ) the graph of \(y = \tanh x\) and its asymptote, and the graph of \(y = \frac { 1 } { x }\). Explain how you can deduce from your sketch that \(\alpha > 1\).
  3. Use the Newton-Raphson method, taking first approximation \(x _ { 1 } = 1\), to find further approximations \(x _ { 2 }\) and \(x _ { 3 }\) for \(\alpha\).
  4. By considering the approximate errors in \(x _ { 1 }\) and \(x _ { 2 }\), estimate the error in \(x _ { 3 }\).
OCR FP2 Specimen Q8
13 marks Challenging +1.8
8
  1. Use the substitution \(t = \tan \frac { 1 } { 2 } x\) to show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sqrt { \frac { 1 - \cos x } { 1 + \sin x } } \mathrm {~d} x = 2 \sqrt { } 2 \int _ { 0 } ^ { 1 } \frac { t } { ( 1 + t ) \left( 1 + t ^ { 2 } \right) } \mathrm { d } t$$
  2. Express \(\frac { t } { ( 1 + t ) \left( 1 + t ^ { 2 } \right) }\) in partial fractions.
  3. Hence find \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sqrt { \frac { 1 - \cos x } { 1 + \sin x } } \mathrm {~d} x\), expressing your answer in an exact form.