OCR FP2 2011 June — Question 4

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
Year2011
SessionJune
TopicPolar coordinates

4 A curve \(C\) has the cartesian equation \(x ^ { 3 } + y ^ { 3 } = a x y\), where \(x \geqslant 0 , y \geqslant 0\) and \(a > 0\).
  1. Express the polar equation of \(C\) in the form \(r = \mathrm { f } ( \theta )\) and state the limits between which \(\theta\) lies. The line \(\theta = \alpha\) is a line of symmetry of \(C\).
  2. Find and simplify an expression for \(\mathrm { f } \left( \frac { 1 } { 2 } \pi - \theta \right)\) and hence explain why \(\alpha = \frac { 1 } { 4 } \pi\).
  3. Find the value of \(r\) when \(\theta = \frac { 1 } { 4 } \pi\).
  4. Sketch the curve \(C\).