OCR FP2 Specimen — Question 5

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
SessionSpecimen
TopicSequences and series, recurrence and convergence

5
\includegraphics[max width=\textwidth, alt={}, center]{e4e1c424-8dd5-4d18-9950-e902de0301b0-3_444_999_1258_539} The diagram shows the curve \(y = \frac { 1 } { x + 1 }\) together with four rectangles of unit width.
  1. Explain how the diagram shows that $$\frac { 1 } { 2 } + \frac { 1 } { 3 } + \frac { 1 } { 4 } + \frac { 1 } { 5 } < \int _ { 0 } ^ { 4 } \frac { 1 } { x + 1 } \mathrm {~d} x$$ The curve \(y = \frac { 1 } { x + 2 }\) passes through the top left-hand corner of each of the four rectangles shown.
  2. By considering the rectangles in relation to this curve, write down a second inequality involving \(\frac { 1 } { 2 } + \frac { 1 } { 3 } + \frac { 1 } { 4 } + \frac { 1 } { 5 }\) and a definite integral.
  3. By considering a suitable range of integration and corresponding rectangles, show that $$\ln ( 500.5 ) < \sum _ { r = 2 } ^ { 1000 } \frac { 1 } { r } < \ln ( 1000 ) .$$