By using a set of rectangles of unit width to approximate an area under the curve \(y = \frac { 1 } { x }\), show that \(\sum _ { x = 1 } ^ { \infty } \frac { 1 } { x }\) is infinite.
By using a set of rectangles of unit width to approximate an area under the curve \(y = \frac { 1 } { x ^ { 2 } }\), find an upper limit for the series \(\sum _ { x = 1 } ^ { \infty } \frac { 1 } { x ^ { 2 } }\).