OCR FP2 Specimen — Question 8

Exam BoardOCR
ModuleFP2 (Further Pure Mathematics 2)
SessionSpecimen
TopicIntegration with Partial Fractions

8
  1. Use the substitution \(t = \tan \frac { 1 } { 2 } x\) to show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sqrt { \frac { 1 - \cos x } { 1 + \sin x } } \mathrm {~d} x = 2 \sqrt { } 2 \int _ { 0 } ^ { 1 } \frac { t } { ( 1 + t ) \left( 1 + t ^ { 2 } \right) } \mathrm { d } t$$
  2. Express \(\frac { t } { ( 1 + t ) \left( 1 + t ^ { 2 } \right) }\) in partial fractions.
  3. Hence find \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sqrt { \frac { 1 - \cos x } { 1 + \sin x } } \mathrm {~d} x\), expressing your answer in an exact form.