A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Integration with Partial Fractions
Q8
OCR FP2 Specimen — Question 8
Exam Board
OCR
Module
FP2 (Further Pure Mathematics 2)
Session
Specimen
Topic
Integration with Partial Fractions
8
Use the substitution \(t = \tan \frac { 1 } { 2 } x\) to show that $$\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sqrt { \frac { 1 - \cos x } { 1 + \sin x } } \mathrm {~d} x = 2 \sqrt { } 2 \int _ { 0 } ^ { 1 } \frac { t } { ( 1 + t ) \left( 1 + t ^ { 2 } \right) } \mathrm { d } t$$
Express \(\frac { t } { ( 1 + t ) \left( 1 + t ^ { 2 } \right) }\) in partial fractions.
Hence find \(\int _ { 0 } ^ { \frac { 1 } { 2 } \pi } \sqrt { \frac { 1 - \cos x } { 1 + \sin x } } \mathrm {~d} x\), expressing your answer in an exact form.
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8