Questions — OCR S2 (167 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR S2 2005 June Q2
2 A continuous random variable has a normal distribution with mean 25.0 and standard deviation \(\sigma\). The probability that any one observation of the random variable is greater than 20,0 is 0.75 . Find the value of \(\sigma\).
OCR S2 2005 June Q3
3
  1. The random variable \(X\) has a \(\mathrm { B } ( 60,0.02 )\) distribution. Use an appropriate approximation to find \(\mathrm { P } ( X \leqslant 2 )\).
  2. The random variable \(Y\) has a \(\operatorname { Po } ( 30 )\) distribution. Use an appropriate approximation to find \(\mathrm { P } ( Y \leqslant 38 )\).
OCR S2 2005 June Q4
4 The height of sweet pea plants grown in a nursery is a random variable. A random sample of 50 plants is measured and is found to have a mean height 1.72 m and variance \(0.0967 \mathrm {~m} ^ { 2 }\).
  1. Calculate an unbiased estimate for the population variance of the heights of sweet pea plants.
  2. Hence test, at the \(10 \%\) significance level, whether the mean height of sweet pea plants grown by the nursery is 1.8 m , stating your hypotheses clearly.
OCR S2 2005 June Q5
5 The random variable \(W\) has the distribution \(\mathbf { B } ( 30 , p )\).
  1. Use the exact binomial distribution to calculate \(\mathbf { P } ( W = 10 )\) when \(p = 0.4\).
  2. Find the range of values of \(p\) for which you would expect that a normal distribution could be used as an approximation to the distribution of \(W\).
  3. Use a normal approximation to calculate \(\mathrm { P } ( W = 10 )\) when \(p = 0.4\).
OCR S2 2005 June Q6
6 A factory makes chocolates of different types. The proportion of milk chocolates made on any day is denoted by \(p\). It is desired to test the null hypothesis \(\mathrm { H } _ { 0 } : p = 0.8\) against the alternative hypothesis \(\mathrm { H } _ { 1 } : p < 0.8\). The test consists of choosing a random sample of 25 chocolates. \(\mathrm { H } _ { 0 }\) is rejected if the number of milk chocolates is \(k\) or fewer. The test is carried out at a significance level as close to \(5 \%\) as possible.
  1. Use tables to find the value of \(k\), giving the values of any relevant probabilities.
  2. The test is carried out 20 times, and each time the value of \(p\) is 0.8 . Each of the tests is independent of all the others. State the expected number of times that the test will result in rejection of the null hypothesis.
  3. The test is carried out once. If in fact the value of \(p\) is 0.6 , find the probability of rejecting \(\mathrm { H } _ { 0 }\).
  4. The test is carried out twice. Each time the value of \(p\) is equally likely to be 0.8 or 0.6 . Find the probability that exactly one of the two tests results in rejection of the null hypothesis.
OCR S2 2005 June Q7
7 The continuous random variable \(X\) has the probability density function shown in the diagram.
\includegraphics[max width=\textwidth, alt={}, center]{b69b1fe8-790d-4727-a892-8ab2ade08962-3_364_766_1229_699}
  1. Find the value of the constant \(k\).
  2. Write down the mean of \(X\), and use integration to find the variance of \(X\).
  3. Three observations of \(X\) are made. Find the probability that \(X < 9\) for all three observations.
  4. The mean of 32 observations of \(X\) is denoted by \(\bar { X }\). State the approximate distribution of \(\bar { X }\), giving its mean and variance. \section*{[Question 8 is printed overleaf.]}
OCR S2 2005 June Q8
8 In excavating an archaeological site, Roman coins are found scattered throughout the site.
  1. State two assumptions needed to model the number of coins found per square metre of the site by a Poisson distribution. Assume now that the number of coins found per square metre of the site can be modelled by a Poisson distribution with mean \(\lambda\).
  2. Given that \(\lambda = 0.75\), calculate the probability that exactly 3 coins are found in a region of the site of area \(7.20 \mathrm {~m} ^ { 2 }\). A test is carried out, at the \(5 \%\) significance level, of the null hypothesis \(\lambda = 0.75\), against the alternative hypothesis \(\lambda > 0.75\), in Region LVI which has area \(4 \mathrm {~m} ^ { 2 }\).
  3. Determine the smallest number of coins that, if found in Region LVI, would lead to rejection of the null hypothesis, stating also the values of any relevant probabilities.
  4. Given that, in fact, \(\lambda = 1.2\) in Region LVI, find the probability that the test results in a Type II error.
OCR S2 2006 June Q1
1 Calculate the variance of the continuous random variable with probability density function given by $$f ( x ) = \begin{cases} \frac { 3 } { 37 } x ^ { 2 } & 3 \leqslant x \leqslant 4
0 & \text { otherwise } \end{cases}$$
OCR S2 2006 June Q2
2
  1. The random variable \(R\) has the distribution \(\mathrm { B } ( 6 , p )\). A random observation of \(R\) is found to be 6. Carry out a \(5 \%\) significance test of the null hypothesis \(\mathrm { H } _ { 0 } : p = 0.45\) against the alternative hypothesis \(\mathrm { H } _ { 1 } : p \neq 0.45\), showing all necessary details of your calculation.
  2. The random variable \(S\) has the distribution \(\mathrm { B } ( n , p ) . \mathrm { H } _ { 0 }\) and \(\mathrm { H } _ { 1 }\) are as in part (i). A random observation of \(S\) is found to be 1 . Use tables to find the largest value of \(n\) for which \(\mathrm { H } _ { 0 }\) is not rejected. Show the values of any relevant probabilities.
OCR S2 2006 June Q3
3 The continuous random variable \(T\) has mean \(\mu\) and standard deviation \(\sigma\). It is known that \(\mathrm { P } ( T < 140 ) = 0.01\) and \(\mathrm { P } ( T < 300 ) = 0.8\).
  1. Assuming that \(T\) is normally distributed, calculate the values of \(\mu\) and \(\sigma\). In fact, \(T\) represents the time, in minutes, taken by a randomly chosen runner in a public marathon, in which about \(10 \%\) of runners took longer than 400 minutes.
  2. State with a reason whether the mean of \(T\) would be higher than, equal to, or lower than the value calculated in part (i).
OCR S2 2006 June Q4
4
  1. Explain briefly what is meant by a random sample. Random numbers are used to select, with replacement, a sample of size \(n\) from a population numbered 000, 001, 002, ..., 799.
  2. If \(n = 6\), find the probability that exactly 4 of the selected sample have numbers less than 500 .
  3. If \(n = 60\), use a suitable approximation to calculate the probability that at least 40 of the selected sample have numbers less than 500 .
OCR S2 2006 June Q5
5 An airline has 300 seats available on a flight to Australia. It is known from experience that on average only \(99 \%\) of those who have booked seats actually arrive to take the flight, the remaining \(1 \%\) being called 'no-shows'. The airline therefore sells more than 300 seats. If more than 300 passengers then arrive, the flight is over-booked. Assume that the number of no-show passengers can be modelled by a binomial distribution.
  1. If the airline sells 303 seats, state a suitable distribution for the number of no-show passengers, and state a suitable approximation to this distribution, giving the values of any parameters. Using the distribution and approximation in part (i),
  2. show that the probability that the flight is over-booked is 0.4165 , correct to 4 decimal places,
  3. find the largest number of seats that can be sold for the probability that the flight is over-booked to be less than 0.2.
OCR S2 2006 June Q6
6 Customers arrive at a post office at a constant average rate of 0.4 per minute.
  1. State an assumption needed to model the number of customers arriving in a given time interval by a Poisson distribution. Assuming that the use of a Poisson distribution is justified,
  2. find the probability that more than 2 customers arrive in a randomly chosen 1 -minute interval,
  3. use a suitable approximation to calculate the probability that more than 55 customers arrive in a given two-hour interval,
  4. calculate the smallest time for which the probability that no customers arrive in that time is less than 0.02 , giving your answer to the nearest second.
OCR S2 2006 June Q7
7 Three independent researchers, \(A , B\) and \(C\), carry out significance tests on the power consumption of a manufacturer's domestic heaters. The power consumption, \(X\) watts, is a normally distributed random variable with mean \(\mu\) and standard deviation 60. Each researcher tests the null hypothesis \(\mathrm { H } _ { 0 } : \mu = 4000\) against the alternative hypothesis \(\mathrm { H } _ { 1 } : \mu > 4000\). Researcher \(A\) uses a sample of size 50 and a significance level of \(5 \%\).
  1. Find the critical region for this test, giving your answer correct to 4 significant figures. In fact the value of \(\mu\) is 4020 .
  2. Calculate the probability that Researcher \(A\) makes a Type II error.
  3. Researcher \(B\) uses a sample bigger than 50 and a significance level of \(5 \%\). Explain whether the probability that Researcher \(B\) makes a Type II error is less than, equal to, or greater than your answer to part (ii).
  4. Researcher \(C\) uses a sample of size 50 and a significance level bigger than \(5 \%\). Explain whether the probability that Researcher \(C\) makes a Type II error is less than, equal to, or greater than your answer to part (ii).
  5. State with a reason whether it is necessary to use the Central Limit Theorem at any point in this question.
OCR S2 2007 June Q1
1 A random sample of observations of a random variable \(X\) is summarised by $$n = 100 , \quad \Sigma x = 4830.0 , \quad \Sigma x ^ { 2 } = 249 \text { 509.16. }$$
  1. Obtain unbiased estimates of the mean and variance of \(X\).
  2. The sample mean of 100 observations of \(X\) is denoted by \(\bar { X }\). Explain whether you would need any further information about the distribution of \(X\) in order to estimate \(\mathrm { P } ( \bar { X } > 60 )\). [You should not attempt to carry out the calculation.]
OCR S2 2007 June Q2
2 It is given that on average one car in forty is yellow. Using a suitable approximation, find the probability that, in a random sample of 130 cars, exactly 4 are yellow.
OCR S2 2007 June Q3
3 The proportion of adults in a large village who support a proposal to build a bypass is denoted by \(p\). A random sample of size 20 is selected from the adults in the village, and the members of the sample are asked whether or not they support the proposal.
  1. Name the probability distribution that would be used in a hypothesis test for the value of \(p\).
  2. State the properties of a random sample that explain why the distribution in part (i) is likely to be a good model.
    \(4 X\) is a continuous random variable.
OCR S2 2007 June Q5
5 The number of system failures per month in a large network is a random variable with the distribution \(\operatorname { Po } ( \lambda )\). A significance test of the null hypothesis \(\mathrm { H } _ { 0 } : \lambda = 2.5\) is carried out by counting \(R\), the number of system failures in a period of 6 months. The result of the test is that \(\mathrm { H } _ { 0 }\) is rejected if \(R > 23\) but is not rejected if \(R \leqslant 23\).
  1. State the alternative hypothesis.
  2. Find the significance level of the test.
  3. Given that \(\mathrm { P } ( R > 23 ) < 0.1\), use tables to find the largest possible actual value of \(\lambda\). You should show the values of any relevant probabilities.
OCR S2 2007 June Q6
6 In a rearrangement code, the letters of a message are rearranged so that the frequency with which any particular letter appears is the same as in the original message. In ordinary German the letter \(e\) appears \(19 \%\) of the time. A certain encoded message of 20 letters contains one letter \(e\).
  1. Using an exact binomial distribution, test at the \(10 \%\) significance level whether there is evidence that the proportion of the letter \(e\) in the language from which this message is a sample is less than in German, i.e., less than \(19 \%\).
  2. Give a reason why a binomial distribution might not be an appropriate model in this context.
OCR S2 2007 June Q7
7 Two continuous random variables \(S\) and \(T\) have probability density functions as follows. $$\begin{array} { l l } S : & f ( x ) = \begin{cases} \frac { 1 } { 2 } & - 1 \leqslant x \leqslant 1
0 & \text { otherwise } \end{cases}
T : & g ( x ) = \begin{cases} \frac { 3 } { 2 } x ^ { 2 } & - 1 \leqslant x \leqslant 1
0 & \text { otherwise } \end{cases} \end{array}$$
  1. Sketch on the same axes the graphs of \(y = \mathrm { f } ( x )\) and \(y = \mathrm { g } ( x )\). [You should not use graph paper or attempt to plot points exactly.]
  2. Explain in everyday terms the difference between the two random variables.
  3. Find the value of \(t\) such that \(\mathrm { P } ( T > t ) = 0.2\).
OCR S2 2007 June Q8
8 A random variable \(Y\) is normally distributed with mean \(\mu\) and variance 12.25. Two statisticians carry out significance tests of the hypotheses \(\mathrm { H } _ { 0 } : \mu = 63.0 , \mathrm { H } _ { 1 } : \mu > 63.0\).
  1. Statistician \(A\) uses the mean \(\bar { Y }\) of a sample of size 23, and the critical region for his test is \(\bar { Y } > 64.20\). Find the significance level for \(A\) 's test.
  2. Statistician \(B\) uses the mean of a sample of size 50 and a significance level of \(5 \%\).
    (a) Find the critical region for \(B\) 's test.
    (b) Given that \(\mu = 65.0\), find the probability that \(B\) 's test results in a Type II error.
  3. Given that, when \(\mu = 65.0\), the probability that \(A\) 's test results in a Type II error is 0.1365 , state with a reason which test is better.
OCR S2 2007 June Q9
9
  1. The random variable \(G\) has the distribution \(\mathrm { B } ( n , 0.75 )\). Find the set of values of \(n\) for which the distribution of \(G\) can be well approximated by a normal distribution.
  2. The random variable \(H\) has the distribution \(\mathrm { B } ( n , p )\). It is given that, using a normal approximation, \(\mathrm { P } ( H \geqslant 71 ) = 0.0401\) and \(\mathrm { P } ( H \leqslant 46 ) = 0.0122\).
    1. Find the mean and standard deviation of the approximating normal distribution.
    2. Hence find the values of \(n\) and \(p\). 4
OCR S2 2014 June Q1
5 marks
1 The random variable \(F\) has the distribution \(B ( 50,0.7 )\). Use a suitable approximation to find \(\mathbf { P } \boldsymbol { ( } \mathbf { F > } \mathbf { 4 0 } \boldsymbol { ) }\). [5]
OCR S2 2014 June Q2
7 marks
2 The events organiser of a school sends out invitations to \(\mathbf { 1 5 0 }\) people to attend its prize day. From past experience the organiser knows that the number of those who will come to the prize day can be modelled by the distribution \(\mathbf { B } ( \mathbf { 1 5 0 } , \mathbf { 0 . 9 8 } )\).
[0pt]
  1. Explain why this distribution cannot be well approximated by either a normal or a Poisson distribution. [3]
    [0pt]
  2. By considering the number of those who do not attend, use a suitable approximation to find the probability that fewer than 146 people attend. [4]
OCR S2 2014 June Q3
7 marks
3 The random variable \(G\) has the distribution \(\mathbf { N } \left( \mu , \boldsymbol { \sigma } ^ { 2 } \right)\). One hundred observations of \(G\) are taken. The results are summarised in the following table.
Interval\(G < 40.0\)\(40.0 \leqslant G < 60.0\)\(G \geqslant 60.0\)
Frequency175825
  1. By considering \(\mathrm { P } ( G < 40.0 )\), write down an equation involving \(\mu\) and \(\sigma\). [2]
  2. Find a second equation involving \(\mu\) and \(\sigma\). Hence calculate values for \(\mu\) and \(\sigma\). [4]
    [0pt]
  3. Explain why your answers are only estimates. [1]