OCR S2 2005 June — Question 8

Exam BoardOCR
ModuleS2 (Statistics 2)
Year2005
SessionJune
TopicHypothesis test of a Poisson distribution

8 In excavating an archaeological site, Roman coins are found scattered throughout the site.
  1. State two assumptions needed to model the number of coins found per square metre of the site by a Poisson distribution. Assume now that the number of coins found per square metre of the site can be modelled by a Poisson distribution with mean \(\lambda\).
  2. Given that \(\lambda = 0.75\), calculate the probability that exactly 3 coins are found in a region of the site of area \(7.20 \mathrm {~m} ^ { 2 }\). A test is carried out, at the \(5 \%\) significance level, of the null hypothesis \(\lambda = 0.75\), against the alternative hypothesis \(\lambda > 0.75\), in Region LVI which has area \(4 \mathrm {~m} ^ { 2 }\).
  3. Determine the smallest number of coins that, if found in Region LVI, would lead to rejection of the null hypothesis, stating also the values of any relevant probabilities.
  4. Given that, in fact, \(\lambda = 1.2\) in Region LVI, find the probability that the test results in a Type II error.