6
\includegraphics[max width=\textwidth, alt={}, center]{3243c326-a51c-462f-a57c-a150d0044ea9-4_547_515_267_772}
A hollow cylinder is fixed with its axis horizontal. \(O\) is the centre of a vertical cross-section of the cylinder and \(D\) is the highest point on the cross-section. \(A\) and \(C\) are points on the circumference of the cross-section such that \(A O\) and \(C O\) are both inclined at an angle of \(30 ^ { \circ }\) below the horizontal diameter through \(O\). The inner surface of the cylinder is smooth and has radius 0.8 m (see diagram). A particle \(P\), of mass \(m \mathrm {~kg}\), and a particle \(Q\), of mass \(5 m \mathrm {~kg}\), are simultaneously released from rest from \(A\) and \(C\), respectively, inside the cylinder. \(P\) and \(Q\) collide; the coefficient of restitution between them is 0.95 .
- Show that, immediately after the collision, \(P\) moves with speed \(6.3 \mathrm {~ms} ^ { - 1 }\), and find the speed and direction of motion of \(Q\).
- Find, in terms of \(m\), an expression for the normal reaction acting on \(P\) when it subsequently passes through \(D\).