OCR M3 2014 June — Question 7

Exam BoardOCR
ModuleM3 (Mechanics 3)
Year2014
SessionJune
TopicSimple Harmonic Motion

7
\includegraphics[max width=\textwidth, alt={}, center]{3243c326-a51c-462f-a57c-a150d0044ea9-4_382_773_1567_648} One end of a light elastic string, of natural length 0.3 m , is attached to a fixed point \(O\) on a smooth plane that is inclined at an angle \(\alpha\) to the horizontal, where \(\sin \alpha = 0.2\). A particle \(P\) of mass \(m \mathrm {~kg}\) is attached to the other end of the string. The string lies along a line of greatest slope of the plane and has modulus of elasticity \(2.45 m \mathrm {~N}\) (see diagram).
  1. Show that in the equilibrium position the extension of the string is 0.24 m .
    \(P\) is given a velocity of \(0.3 \mathrm {~ms} ^ { - 1 }\) down the plane from the equilibrium position.
  2. Show that \(P\) performs simple harmonic motion with period 2.20 s (correct to 3 significant figures), and find the amplitude of the motion.
  3. Find the distance of \(P\) from \(O\) and the velocity of \(P\) at the instant 1.5 seconds after \(P\) is set in motion.