5
\includegraphics[max width=\textwidth, alt={}, center]{bfa6d51d-0992-4f43-adab-77ce893c1ca9-3_576_535_258_804}
A particle \(P\) of mass 0.3 kg is moving in a vertical circle. It is attached to the fixed point \(O\) at the centre of the circle by a light inextensible string of length 1.5 m . When the string makes an angle of \(40 ^ { \circ }\) with the downward vertical, the speed of \(P\) is \(6.5 \mathrm {~m} \mathrm {~s} ^ { - 1 }\) (see diagram). Air resistance may be neglected.
- Find the radial and transverse components of the acceleration of \(P\) at this instant.
In the subsequent motion, with the string still taut and making an angle \(\theta ^ { \circ }\) with the downward vertical, the speed of \(P\) is \(v \mathrm {~m} \mathrm {~s} ^ { - 1 }\)
- Use conservation of energy to show that \(v ^ { 2 } \approx 19.7 + 29.4 \cos \theta ^ { \circ }\).
- Find the tension in the string in terms of \(\theta\).
- Find the value of \(v\) at the instant when the string becomes slack.
\includegraphics[max width=\textwidth, alt={}, center]{bfa6d51d-0992-4f43-adab-77ce893c1ca9-3_574_842_1640_664}
A step-ladder is modelled as two uniform rods \(A B\) and \(A C\), freely jointed at \(A\). The rods are in equilibrium in a vertical plane with \(B\) and \(C\) in contact with a rough horizontal surface. The rods have equal lengths; \(A B\) has weight 150 N and \(A C\) has weight 270 N . The point \(A\) is 2.5 m vertically above the surface, and \(B C = 1.6 \mathrm {~m}\) (see diagram). - Find the horizontal and vertical components of the force acting on \(A C\) at \(A\).
- The coefficient of friction has the same value \(\mu\) at \(B\) and at \(C\), and the step-ladder is on the point of slipping. Giving a reason, state whether the equilibrium is limiting at \(B\) or at \(C\), and find \(\mu\).
\includegraphics[max width=\textwidth, alt={}, center]{bfa6d51d-0992-4f43-adab-77ce893c1ca9-4_648_227_269_982}
Two points \(A\) and \(B\) lie on a vertical line with \(A\) at a distance 2.6 m above \(B\). A particle \(P\) of mass 10 kg is joined to \(A\) by an elastic string and to \(B\) by another elastic string (see diagram). Each string has natural length 0.8 m and modulus of elasticity 196 N . The strings are light and air resistance may be neglected. - Verify that \(P\) is in equilibrium when \(P\) is vertically below \(A\) and the length of the string \(P A\) is 1.5 m .
The particle is set in motion along the line \(A B\) with both strings remaining taut. The displacement of \(P\) below the equilibrium position is denoted by \(x\) metres.
- Show that the tension in the string \(P A\) is \(245 ( 0.7 + x )\) newtons, and the tension in the string \(P B\) is \(245 ( 0.3 - x )\) newtons.
- Show that the motion of \(P\) is simple harmonic.
- Given that the amplitude of the motion is 0.25 m , find the proportion of time for which \(P\) is above the mid-point of \(A B\).