Questions — OCR C3 (285 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
OCR C3 Q9
9. \(\mathrm { f } ( x ) = \mathrm { e } ^ { 3 x + 1 } - 2 , x \in \mathbb { R }\).
  1. State the range of f . The curve \(y = \mathrm { f } ( x )\) meets the \(y\)-axis at the point \(P\) and the \(x\)-axis at the point \(Q\).
  2. Find the exact coordinates of \(P\) and \(Q\).
  3. Show that the tangent to the curve at \(P\) has the equation $$y = 3 e x + e - 2$$
  4. Find to 3 significant figures the \(x\)-coordinate of the point where the tangent to the curve at \(P\) meets the tangent to the curve at \(Q\).
OCR C3 Q1
1.
\includegraphics[max width=\textwidth, alt={}]{5e6a37a1-c51f-4637-aaae-48da6ab3eca0-1_305_606_219_539}
The diagram shows the curve with equation \(y = \ln ( 2 + \cos x ) , x \geq 0\).
The smallest value of \(x\) for which the curve meets the \(x\)-axis is \(a\) as shown.
  1. Find the value of \(a\).
  2. Use Simpson's rule with four strips of equal width to estimate the area of the region bounded by the curve in the interval \(0 \leq x \leq a\) and the coordinate axes.
OCR C3 Q2
2. The functions \(f\) and \(g\) are defined by $$\begin{aligned} & f : x \rightarrow 2 - x ^ { 2 } , \quad x \in \mathbb { R } ,
& g : x \rightarrow \frac { 3 x } { 2 x - 1 } , \quad x \in \mathbb { R } , \quad x \neq \frac { 1 } { 2 } . \end{aligned}$$
  1. Evaluate fg(2).
  2. Solve the equation \(\operatorname { gf } ( x ) = \frac { 1 } { 2 }\).
OCR C3 Q3
3. Find the coordinates of the stationary points of the curve with equation $$y = \frac { x - 1 } { x ^ { 2 } - 2 x + 5 }$$
OCR C3 Q4
  1. (i) Sketch the graph of \(y = 2 + \sec \left( x - \frac { \pi } { 6 } \right)\) for \(x\) in the interval \(0 \leq x \leq 2 \pi\).
Show on your sketch the coordinates of any turning points and the equations of any asymptotes.
(ii) Find, in terms of \(\pi\), the \(x\)-coordinates of the points where the graph crosses the \(x\)-axis.
OCR C3 Q5
5. A curve has the equation \(y = \sqrt { 3 x + 11 }\). The point \(P\) on the curve has \(x\)-coordinate 3 .
  1. Show that the tangent to the curve at \(P\) has the equation $$3 x - 4 \sqrt { 5 } y + 31 = 0$$ The normal to the curve at \(P\) crosses the \(y\)-axis at \(Q\).
  2. Find the \(y\)-coordinate of \(Q\) in the form \(k \sqrt { 5 }\).
OCR C3 Q6
6. (i) Express \(3 \cos x ^ { \circ } + \sin x ^ { \circ }\) in the form \(R \cos ( x - \alpha ) ^ { \circ }\) where \(R > 0\) and \(0 < \alpha < 90\).
(ii) Using your answer to part (a), or otherwise, solve the equation $$6 \cos ^ { 2 } x ^ { \circ } + \sin 2 x ^ { \circ } = 0$$ for \(x\) in the interval \(0 \leq x \leq 360\), giving your answers to 1 decimal place where appropriate.
OCR C3 Q7
7. The finite region \(R\) is bounded by the curve with equation \(y = x + \frac { 2 } { x }\), the \(x\)-axis and the lines \(x = 1\) and \(x = 4\).
  1. Find the exact area of \(R\). The region \(R\) is rotated completely about the \(x\)-axis.
  2. Find the volume of the solid formed, giving your answer in terms of \(\pi\).
OCR C3 Q8
8. The population in thousands, \(P\), of a town at time \(t\) years after \(1 ^ { \text {st } }\) January 1980 is modelled by the formula $$P = 30 + 50 \mathrm { e } ^ { 0.002 t }$$ Use this model to estimate
  1. the population of the town on \(1 ^ { \text {st } }\) January 2010,
  2. the year in which the population first exceeds 84000 . The population in thousands, \(Q\), of another town is modelled by the formula $$Q = 26 + 50 \mathrm { e } ^ { 0.003 t }$$
  3. Show that the value of \(t\) when \(P = Q\) is a solution of the equation $$t = 1000 \ln \left( 1 + 0.08 \mathrm { e } ^ { - 0.002 t } \right)$$
  4. Use the iterative formula $$t _ { n + 1 } = 1000 \ln \left( 1 + 0.08 \mathrm { e } ^ { - 0.002 t _ { n } } \right)$$ with \(t _ { 0 } = 50\) to find \(t _ { 1 } , t _ { 2 }\) and \(t _ { 3 }\) and hence, the year in which the populations of these two towns will be equal according to these models.
OCR C3 Q9
9.
\includegraphics[max width=\textwidth, alt={}, center]{5e6a37a1-c51f-4637-aaae-48da6ab3eca0-3_727_1022_244_342} The diagram shows the curve with equation \(y = \mathrm { f } ( x )\). The curve crosses the axes at \(( p , 0 )\) and \(( 0 , q )\) and the lines \(x = 1\) and \(y = 2\) are asymptotes of the curve.
  1. Showing the coordinates of any points of intersection with the axes and the equations of any asymptotes, sketch on separate diagrams the graphs of
    1. \(y = | \mathrm { f } ( x ) |\),
    2. \(y = 2 \mathrm { f } ( x + 1 )\). Given also that $$\mathrm { f } ( x ) \equiv \frac { 2 x - 1 } { x - 1 } , \quad x \in \mathbb { R } , \quad x \neq 1$$
  2. find the values of \(p\) and \(q\),
  3. find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
OCR C3 Q1
1. $$f ( x ) = \frac { 4 x - 1 } { 2 x + 1 }$$ Find an equation for the tangent to the curve \(y = \mathrm { f } ( x )\) at the point where \(x = - 2\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
OCR C3 Q2
2.
\includegraphics[max width=\textwidth, alt={}, center]{b124d427-1f9b-4770-95bb-ed79bae5b4fb-1_460_805_587_486} The diagram shows the curve with equation \(y = \frac { 1 } { 2 } \ln 3 x\).
  1. Express the equation of the curve in the form \(x = \mathrm { f } ( y )\). The shaded region is bounded by the curve, the coordinate axes and the line \(y = 1\).
  2. Find, in terms of \(\pi\) and e, the volume of the solid formed when the shaded region is rotated through four right angles about the \(y\)-axis.
OCR C3 Q3
3. (i) Use the identity for \(\sin ( A + B )\) to show that $$\sin 3 x \equiv 3 \sin x - 4 \sin ^ { 3 } x$$ (ii) Hence find, in terms of \(\pi\), the solutions of the equation $$\sin 3 x - \sin x = 0$$ for \(x\) in the interval \(0 \leq x < 2 \pi\).
OCR C3 Q4
4. The function f is defined by $$\mathrm { f } ( x ) \equiv x ^ { 2 } - 2 a x , \quad x \in \mathbb { R }$$ where \(a\) is a positive constant.
  1. Showing the coordinates of any points where the graph meets the axes, sketch the graph of \(y = | \mathrm { f } ( x ) |\). The function \(g\) is defined by $$\mathrm { g } ( x ) \equiv 3 a x , \quad x \in \mathbb { R } .$$
  2. Find \(\mathrm { fg } ( \mathrm { a } )\) in terms of \(a\).
  3. Solve the equation $$\operatorname { gf } ( x ) = 9 a ^ { 3 }$$
OCR C3 Q5
  1. (i) Find, as natural logarithms, the solutions of the equation
$$\mathrm { e } ^ { 2 x } - 8 \mathrm { e } ^ { x } + 15 = 0$$ (ii) Use proof by contradiction to prove that \(\log _ { 2 } 3\) is irrational.
OCR C3 Q6
6. \(\quad f ( x ) = 2 x ^ { 2 } + 3 \ln ( 2 - x ) , \quad x \in \mathbb { R } , \quad x < 2\).
  1. Show that the equation \(\mathrm { f } ( x ) = 0\) can be written in the form $$x = 2 - \mathrm { e } ^ { k x ^ { 2 } }$$ where \(k\) is a constant to be found. The root, \(\alpha\), of the equation \(\mathrm { f } ( x ) = 0\) is 1.9 correct to 1 decimal place.
  2. Use the iterative formula $$x _ { n + 1 } = 2 - \mathrm { e } ^ { k x _ { n } ^ { 2 } }$$ with \(x _ { 0 } = 1.9\) and your value of \(k\), to find \(\alpha\) correct to 3 decimal places.
    You should show the result of each iteration.
  3. Solve the equation \(\mathrm { f } ^ { \prime } ( x ) = 0\).
OCR C3 Q7
7. (i) Use the identity $$\cos ( A + B ) \equiv \cos A \cos B - \sin A \sin B$$ to prove that $$\cos x \equiv 1 - 2 \sin ^ { 2 } \frac { x } { 2 }$$ (ii) Prove that, for \(\sin x \neq 0\), $$\frac { 1 - \cos x } { \sin x } \equiv \tan \frac { x } { 2 }$$ (iii) Find the values of \(x\) in the interval \(0 \leq x \leq 360 ^ { \circ }\) for which $$\frac { 1 - \cos x } { \sin x } = 2 \sec ^ { 2 } \frac { x } { 2 } - 5$$ giving your answers to 1 decimal place where appropriate.
OCR C3 Q8
8. \(f ( x ) = x ^ { 2 } - 2 x + 5 , x \in \mathbb { R } , x \geq 1\).
  1. Express \(\mathrm { f } ( x )\) in the form \(( x + a ) ^ { 2 } + b\), where \(a\) and \(b\) are constants.
  2. State the range of f .
  3. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\).
  4. Describe fully two transformations that would map the graph of \(y = \mathrm { f } ^ { - 1 } ( x )\) onto the graph of \(y = \sqrt { x } , x \geq 0\).
  5. Find an equation for the normal to the curve \(y = \mathrm { f } ^ { - 1 } ( x )\) at the point where \(x = 8\).
OCR C3 Q1
  1. A balloon is filled with air at a constant rate of \(80 \mathrm {~cm} ^ { 3 }\) per second.
Assuming that the balloon is spherical as it is filled, find to 3 significant figures the rate at which its radius is increasing at the instant when its radius is 6 cm .
OCR C3 Q2
2. Solve the equation $$3 \operatorname { cosec } \theta ^ { \circ } + 8 \cos \theta ^ { \circ } = 0$$ for \(\theta\) in the interval \(0 \leq \theta \leq 180\), giving your answers to 1 decimal place.
OCR C3 Q3
3. (a) Given that \(y = \ln x\),
  1. find an expression for \(\ln \frac { x ^ { 2 } } { \mathrm { e } }\) in terms of \(y\),
  2. show that \(\log _ { 2 } x = \frac { y } { \ln 2 }\).
    (b) Hence, or otherwise, solve the equation $$\log _ { 2 } x = 4 - \ln \frac { x ^ { 2 } } { \mathrm { e } } ,$$ giving your answer to 2 decimal places.
OCR C3 Q4
4.
\includegraphics[max width=\textwidth, alt={}, center]{c0b79c3c-9537-4c71-903b-01434dfb5d26-1_492_803_1562_452} The diagram shows the curves \(y = ( x - 1 ) ^ { 2 }\) and \(y = 2 - \frac { 2 } { x } , x > 0\).
  1. Verify that the two curves meet at the points where \(x = 1\) and where \(x = 2\). The shaded region bounded by the two curves is rotated completely about the \(x\)-axis.
  2. Find the exact volume of the solid formed.
OCR C3 Q5
5. \(\mathrm { f } ( x ) = 5 + \mathrm { e } ^ { 2 x - 3 } , x \in \mathbb { R }\).
  1. State the range of f .
  2. Find an expression for \(\mathrm { f } ^ { - 1 } ( x )\) and state its domain.
  3. Solve the equation \(\mathrm { f } ( x ) = 7\).
  4. Find an equation for the tangent to the curve \(y = \mathrm { f } ( x )\) at the point where \(y = 7\).
OCR C3 Q6
6. (i) Express \(\sqrt { 3 } \sin \theta + \cos \theta\) in the form \(R \sin ( \theta + \alpha )\) where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\).
(ii) State the maximum value of \(\sqrt { 3 } \sin \theta + \cos \theta\) and the smallest positive value of \(\theta\) for which this maximum value occurs.
(iii) Solve the equation $$\sqrt { 3 } \sin \theta + \cos \theta + \sqrt { 3 } = 0$$ for \(\theta\) in the interval \(- \pi \leq \theta \leq \pi\), giving your answers in terms of \(\pi\).
OCR C3 Q7
7. $$\mathrm { f } ( x ) = \frac { x ^ { 2 } + 3 } { 4 x + 1 } , \quad x \in \mathbb { R } , \quad x \neq - \frac { 1 } { 4 }$$
  1. Find and simplify an expression for \(\mathrm { f } ^ { \prime } ( x )\).
  2. Find the set of values of \(x\) for which \(\mathrm { f } ( x )\) is increasing.
  3. Use Simpson's rule with six strips to find an approximate value for $$\int _ { 0 } ^ { 6 } f ( x ) d x$$