| Exam Board | OCR |
| Module | C3 (Core Mathematics 3) |
| Topic | Harmonic Form |
6. (i) Express \(\sqrt { 3 } \sin \theta + \cos \theta\) in the form \(R \sin ( \theta + \alpha )\) where \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\).
(ii) State the maximum value of \(\sqrt { 3 } \sin \theta + \cos \theta\) and the smallest positive value of \(\theta\) for which this maximum value occurs.
(iii) Solve the equation
$$\sqrt { 3 } \sin \theta + \cos \theta + \sqrt { 3 } = 0$$
for \(\theta\) in the interval \(- \pi \leq \theta \leq \pi\), giving your answers in terms of \(\pi\).