OCR C3 — Question 7

Exam BoardOCR
ModuleC3 (Core Mathematics 3)
TopicReciprocal Trig & Identities

7. (i) Use the identity $$\cos ( A + B ) \equiv \cos A \cos B - \sin A \sin B$$ to prove that $$\cos x \equiv 1 - 2 \sin ^ { 2 } \frac { x } { 2 }$$ (ii) Prove that, for \(\sin x \neq 0\), $$\frac { 1 - \cos x } { \sin x } \equiv \tan \frac { x } { 2 }$$ (iii) Find the values of \(x\) in the interval \(0 \leq x \leq 360 ^ { \circ }\) for which $$\frac { 1 - \cos x } { \sin x } = 2 \sec ^ { 2 } \frac { x } { 2 } - 5$$ giving your answers to 1 decimal place where appropriate.