Edexcel
FP2
2003
June
Q6
10 marks
Standard +0.8
6. (a) Using the substitution \(t = x ^ { 2 }\), or otherwise, find
$$\int x ^ { 3 } \mathrm { e } ^ { - x ^ { 2 } } \mathrm {~d} x$$
(b) Find the general solution of the differential equation
$$x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 3 y = x \mathrm { e } ^ { - x ^ { 2 } } , \quad x > 0$$
Edexcel
FP2
2003
June
Q9
3 marks
Moderate -0.8
9.
$$z = 4 \left( \cos \frac { \pi } { 4 } + i \sin \frac { \pi } { 4 } \right) , \text { and } \boldsymbol { w } = 3 \left( \cos \frac { 2 \pi } { 3 } + i \sin \frac { 2 \pi } { 3 } \right)$$
Express zw in the form \(r ( \cos \theta + \mathrm { i } \sin \theta ) , r > 0 , - \pi < \theta < \pi\).
Edexcel
FP2
2003
June
Q12
10 marks
Standard +0.8
12. (a) Use the substitution \(y = v x\) to transform the equation
$$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { ( 4 x + y ) ( x + y ) } { x ^ { 2 } } , x > 0$$
into the equation
$$x \frac { \mathrm {~d} v } { \mathrm {~d} x } = ( 2 + v ) ^ { 2 }$$
(b) Solve the differential equation II to find \(\boldsymbol { v }\) as a function of \(\boldsymbol { x }\)
(c) Hence show that \(\quad y = - 2 x - \frac { x } { \ln x + c }\), where \(c\) is an arbitrary constant, is a general solution of the differential equation I.
Edexcel
FP2
2003
June
Q14
14 marks
Standard +0.3
14. (a) Find the value of \(\lambda\) for which \(\lambda x \cos 3 x\) is a particular integral of the differential equation
$$\frac { d ^ { 2 } y } { d x ^ { 2 } } + 9 y = - 12 \sin 3 x$$
(b) Hence find the general solution of this differential equation.(4)
The particular solution of the differential equation for which \(\boldsymbol { y } = \mathbf { 1 }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \mathbf { 2 }\) at \(\boldsymbol { x } = \mathbf { 0 }\), is \(\boldsymbol { y } = \mathbf { g } ( \boldsymbol { x } )\).
(c) Find \(\mathrm { g } ( x )\).
(d) Sketch the graph of \(y = g ( x ) , 0 \leq x \leq \pi\).
(2)
\section*{15.}
\section*{Figure 1}
Figure 1 shows a sketch of the cardioid \(C\) with equation \(r = a ( 1 + \cos \theta ) , - \pi < \theta \leq \pi\). Also shown are the tangents to \(C\) that are parallel and perpendicular to the initial line. These tangents form a rectangle WXYZ.
\includegraphics[max width=\textwidth, alt={}, center]{141c7b1b-4236-4433-84af-04fa9baa3d96-5_407_782_315_1142}
(a) Find the area of the finite region, shaded in Fig. 1, bounded by the curve \(C\).
(b) Find the polar coordinates of the points \(A\) and \(B\) where \(W Z\) touches the curve \(C\).
(c) Hence find the length of \(W X\).
Given that the length of \(\boldsymbol { W } \boldsymbol { Z }\) is \(\frac { 3 \sqrt { 3 } a } { 2 }\),
(d) find the area of the rectangle \(W X Y Z\).
A heart-shape is modelled by the cardioid \(C\), where \(\boldsymbol { a } = \mathbf { 1 0 ~ c m }\). The heart shape is cut from the rectangular card WXYZ, shown in Fig. 1.
(e) Find a numerical value for the area of card wasted in making this heart shape.
8. A transformation \(T\) from the \(z\)-plane to the \(w\)-plane is defined by
$$w = \frac { z + 1 } { i z - 1 } , \quad z \neq - i$$
where \(z = x + \mathrm { i } y , w = u + \mathrm { i } v\) and \(x , y , u\) and \(v\) are real.
\(T\) transforms the circle \(| z | = 1\) in the \(z\)-plane onto a straight line \(L\) in the \(w\)-plane.
(a) Find an equation of \(L\) giving your answer in terms of \(u\) and \(v\).
(b) Show that \(T\) transforms the line \(\operatorname { Im } z = 0\) in the \(z\)-plane onto a circle \(C\) in the \(w\)-plane, giving the centre and radius of this circle.
(c) On a single Argand diagram sketch \(L\) and \(C\).
Question: Solve
$$x ^ { 5 } = - ( 9 \sqrt { 3 } ) i$$
Edexcel
FP2
2004
June
Q3
11 marks
Standard +0.3
3. (a) Sketch, on the same axes, the graph of \(y = | ( x - 2 ) ( x - 4 ) |\), and the line with equation \(y = 6 - 2 x\).
(b) Find the exact values of \(x\) for which \(| ( x - 2 ) ( x - 4 ) | = 6 - 2 x\).
(c) Hence solve the inequality \(| ( x - 2 ) ( x - 4 ) | < 6 - 2 x\).
(2)(Total 11 marks)
Edexcel
FP2
2005
June
Q6
12 marks
Standard +0.3
6. (a) On the same diagram, sketch the graphs of \(y = \left| x ^ { 2 } - 4 \right|\) and \(y = | 2 x - 1 |\), showing the coordinates of the points where the graphs meet the axes.
(b) Solve \(\left| x ^ { 2 } - 4 \right| = | 2 x - 1 |\), giving your answers in surd form where appropriate.
(c) Hence, or otherwise, find the set of values of \(x\) for which \(\left| x ^ { 2 } - 4 \right| > | 2 x - 1 |\).
(3)(Total 12 marks)