Edexcel FP2 2003 June — Question 8

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2003
SessionJune
TopicSecond order differential equations

8. $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} t ^ { 2 } } - 6 \frac { \mathrm {~d} y } { \mathrm {~d} t } + 9 y = 4 \mathrm { e } ^ { 3 t } , \quad t \geq 0 .$$
  1. Show that \(K t ^ { 2 } e ^ { 3 t }\) is a particular integral of the differential equation, where \(K\) is a constant to be found.
  2. Find the general solution of the differential equation. (3) Given that a particular solution satisfies \(\boldsymbol { y } = 3\) and \(\frac { \mathrm { d } y } { \mathrm {~d} t } = 1\) when \(\boldsymbol { t } = \mathbf { 0 }\),
  3. find this solution.(4) Another particular solution which satisfies \(\boldsymbol { y } = \mathbf { 1 }\) and \(\frac { \mathrm { d } y } { \mathrm {~d} t } = \mathbf { 0 }\) when \(\boldsymbol { t } = \mathbf { 0 }\), has equation $$y = \left( 1 - 3 t + 2 t ^ { 2 } \right) \mathrm { e } ^ { 3 t }$$
  4. For this particular solution draw a sketch graph of \(y\) against \(t\), showing where the graph crosses the \(t\)-axis. Determine also the coordinates of the minimum of the point on the sketch graph.