| Exam Board | Edexcel |
| Module | FP2 (Further Pure Mathematics 2) |
| Year | 2005 |
| Session | June |
| Topic | Second order differential equations |
3. (a) Show that the transformation \(y = x v\) transforms the equation
$$\begin{array} { l l }
x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + \left( 2 + 9 x ^ { 2 } \right) y = x ^ { 5 } ,
\text { into the equation } & \frac { \mathrm { d } ^ { 2 } v } { \mathrm {~d} x ^ { 2 } } + 9 v = x ^ { 2 } .
\end{array}$$I
(b) Solve the differential equation II to find \(v\) as a function of \(x\).
(c) Hence state the general solution of the differential equation I.
(1)(Total 12 marks)