Edexcel FP2 2003 June — Question 12

Exam BoardEdexcel
ModuleFP2 (Further Pure Mathematics 2)
Year2003
SessionJune
TopicFirst order differential equations (integrating factor)

12. (a) Use the substitution \(y = v x\) to transform the equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { ( 4 x + y ) ( x + y ) } { x ^ { 2 } } , x > 0$$ into the equation $$x \frac { \mathrm {~d} v } { \mathrm {~d} x } = ( 2 + v ) ^ { 2 }$$ (b) Solve the differential equation II to find \(\boldsymbol { v }\) as a function of \(\boldsymbol { x }\)
(c) Hence show that \(\quad y = - 2 x - \frac { x } { \ln x + c }\), where \(c\) is an arbitrary constant, is a general solution of the differential equation I.