Questions — Edexcel S4 (144 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel S4 2005 June Q6
6. Brickland and Goodbrick are two manufacturers of bricks. The lengths of the bricks produced by each manufacturer can be assumed to be normally distributed. A random sample of 20 bricks is taken from Brickland and the length, \(x \mathrm {~mm}\), of each brick is recorded. The mean of this sample is 207.1 mm and the variance is \(3.2 \mathrm {~mm} ^ { 2 }\).
  1. Calculate the \(98 \%\) confidence interval for the mean length of brick from Brickland. A random sample of 10 bricks is selected from those manufactured by Goodbrick. The length of each brick, \(y \mathrm {~mm}\), is recorded. The results are summarised as follows. $$\sum y = 2046.2 \quad \sum y ^ { 2 } = 418785.4$$ The variances of the length of brick for each manufacturer are assumed to be the same.
  2. Find a \(90 \%\) confidence interval for the value by which the mean length of brick made by Brickland exceeds the mean length of brick made by Goodbrick.
Edexcel S4 2005 June Q7
7. A bag contains marbles of which an unknown proportion \(p\) is red. A random sample of \(n\) marbles is drawn, with replacement, from the bag. The number \(X\) of red marbles drawn is noted. A second random sample of \(m\) marbles is drawn, with replacement. The number \(Y\) of red marbles drawn is noted. Given that \(p _ { 1 } = \frac { a X } { n } + \frac { b Y } { m }\) is an unbiased estimator of \(p\),
  1. show that \(a + b = 1\). Given that \(p _ { 2 } = \frac { ( X + Y ) } { n + m }\),
  2. show that \(p _ { 2 }\) is an unbiased estimator for \(p\).
  3. Show that the variance of \(p _ { 1 }\) is \(p ( 1 - p ) \left( \frac { a ^ { 2 } } { n } + \frac { b ^ { 2 } } { m } \right)\).
  4. Find the variance of \(p _ { 2 }\).
  5. Given that \(a = 0.4 , m = 10\) and \(n = 20\), explain which estimator \(p _ { 1 }\) or \(p _ { 2 }\) you should use.
Edexcel S4 2006 June Q1
  1. Historical records from a large colony of squirrels show that the weight of squirrels is normally distributed with a mean of 1012 g . Following a change in the diet of squirrels, a biologist is interested in whether or not the mean weight has changed.
A random sample of 14 squirrels is weighed and their weights \(x\), in grams, recorded. The results are summarised as follows: $$\Sigma x = 13700 , \quad \Sigma x ^ { 2 } = 13448750 .$$ Stating your hypotheses clearly test, at the \(5 \%\) level of significance, whether or not there has been a change in the mean weight of the squirrels.
Edexcel S4 2006 June Q2
2. The weights, in grams, of apples are assumed to follow a normal distribution. The weights of apples sold by a supermarket have variance \(\sigma _ { s } { } ^ { 2 }\). A random sample of 4 apples from the supermarket had weights $$\text { 114, 100, 119, } 123 .$$
  1. Find a 95\% confidence interval for \(\sigma _ { s } ^ { 2 }\). The weights of apples sold on a market stall have variance \(\sigma _ { M } ^ { 2 }\). A second random sample of 7 apples was taken from the market stall. The sample variance \(s _ { M } ^ { 2 }\) of the apples was 318.8.
  2. Stating your hypotheses clearly test, at the \(1 \%\) levcel of significnace, whether or not there is evidence that \(\sigma _ { M } ^ { 2 } > \sigma _ { s } ^ { 2 }\).
Edexcel S4 2006 June Q3
3. As part of an investigation into the effectiveness of solar heating, a pair of houses was identified where the mean weekly fuel consumption was the same. One of the houses was then fitted with solar heating and the other was not. Following the fitting of the solar heating, a random sample of 9 weeks was taken and the table below shows the weekly fuel consumption for each house.
Week123456789
Without solar heating191918146753143
With solar heating1322111614102038
Units of fuel used per week
  1. Stating your hypotheses clearly, test, at the \(5 \%\) level of significance, whether or not there is evidence that the solar heating reduces the mean weekly fuel consumption.
    (8)
  2. State an assumption about weekly fuel consumption that is required to carry out this test.
Edexcel S4 2006 June Q4
4. Two machines \(A\) and \(B\) produce the same type of component in a factory. The factory manager wishes to know whether the lengths, \(x \mathrm {~cm}\), of the components produced by the two machines have the same mean. The manager took a random sample of components from each machine and the results are summarised in the table below.
Sample sizeMean \(\bar { x }\)
Standard
deviation \(s\)
Machine \(A\)94.830.721
Machine \(B\)104.850.572
The lengths of components produced by the machines can be assumed to follow normal distributions.
  1. Use a two tail test to show, at the \(10 \%\) significance level, that the variances of the lengths of components produced by each machine can be assumed to be equal.
    (4)
  2. Showing your working clearly, find a \(95 \%\) confidence interval for \(\mu _ { B } - \mu _ { A }\), where \(\mu _ { A }\) and \(\mu _ { B }\) are the mean lengths of the populations of components produced by machine \(A\) and machine \(B\) respectively. There are serious consequences for the production at the factory if the difference in mean lengths of the components produced by the two machines is more than 0.7 cm .
  3. State, giving your reason, whether or not the factory manager should be concerned.
Edexcel S4 2006 June Q5
5. Rolls of cloth delivered to a factory contain defects at an average rate of \(\lambda\) per metre. A quality assurance manager selects a random sample of 15 metres of cloth from each delivery to test whether or not there is evidence that \(\lambda > 0.3\). The criterion that the manager uses for rejecting the hypothesis that \(\lambda = 0.3\) is that there are 9 or more defects in the sample.
  1. Find the size of the test. Table 1 gives some values, to 2 decimal places, of the power function of this test. \begin{table}[h]
    \(\lambda\)0.40.50.60.70.80.91.0
    Power0.150.34\(r\)0.720.850.920.96
    \captionsetup{labelformat=empty} \caption{Table 1}
    \end{table}
  2. Find the value of \(r\). The manager would like to design a test, of whether or not \(\lambda > 0.3\), that uses a smaller length of cloth. He chooses a length of 10 m and requires the probability of a type I error to be less than \(10 \%\).
  3. Find the criterion to reject the hypothesis that \(\lambda = 0.3\) which makes the test as powerful as possible.
  4. Hence state the size of this second test. Table 2 gives some values, to 2 decimal places, of the power function for the test in part (c). \begin{table}[h]
    \(\lambda\)0.40.50.60.70.80.91.0
    Power0.210.380.550.70\(s\)0.880.93
    \captionsetup{labelformat=empty} \caption{Table 2}
    \end{table}
  5. Find the value of \(s\).
  6. Using the same axes, on graph paper draw the graphs of the power functions of these two tests.
    1. State the value of \(\lambda\) where the graphs cross.
    2. Explain the significance of \(\lambda\) being greater than this value. The cost of wrongly rejecting a delivery of cloth with \(\lambda = 0.3\) is low. Deliveries of cloth with \(\lambda > 0.7\) are unusual.
  7. Suggest, giving your reasons, which the test manager should adopt.
    (2)
Edexcel S4 2006 June Q6
6. \begin{figure}[h]
\captionsetup{labelformat=empty} \caption{Figure 1} \includegraphics[alt={},max width=\textwidth]{f7137ba8-5526-4107-bccd-047de235d7d1-5_392_407_281_852}
\end{figure} Figure 1 shows a square of side \(t\) and area \(t ^ { 2 }\) which lies in the first quadrant with one vertex at the origin. A point \(P\) with coordinates ( \(X , Y\) ) is selected at random inside the square and the coordinates are used to estimate \(t ^ { 2 }\). It is assumed that \(X\) and \(Y\) are independent random variables each having a continuous uniform distribution over the interval \([ 0 , t ]\).
[0pt] [You may assume that \(\mathrm { E } \left( X ^ { n } Y ^ { n } \right) = \mathrm { E } \left( X ^ { n } \right) \mathrm { E } \left( Y ^ { n } \right)\), where \(n\) is a positive integer.]
  1. Use integration to show that \(\mathrm { E } \left( X ^ { n } \right) = \frac { t ^ { n } } { n + 1 }\). The random variable \(S = k X Y\), where \(k\) is a constant, is an unbiased estimator for \(t ^ { 2 }\).
  2. Find the value of \(k\).
  3. Show that \(\operatorname { Var } S = \frac { 7 t ^ { 4 } } { 9 }\). The random variable \(U = q \left( X ^ { 2 } + Y ^ { 2 } \right)\), where \(q\) is a constant, is also an unbiased estimator for \(t ^ { 2 }\).
  4. Show that the value of \(q = \frac { 3 } { 2 }\).
  5. Find Var \(U\).
  6. State, giving a reason, which of \(S\) and \(U\) is the better estimator of \(t ^ { 2 }\). The point \(( 2,3 )\) is selected from inside the square.
  7. Use the estimator chosen in part (f) to find an estimate for the area of the square.
Edexcel S4 2007 June Q1
  1. A medical student is investigating two methods of taking a person's blood pressure. He takes a random sample of 10 people and measures their blood pressure using an arm cuff and a finger monitor. The table below shows the blood pressure for each person, measured by each method.
Person\(A\)\(B\)\(C\)\(D\)\(E\)\(F\)\(G\)\(H\)\(I\)\(J\)
Arm cuff140110138127142112122128132160
Finger monitor154112156152142104126132144180
  1. Use a paired \(t\)-test to determine, at the \(10 \%\) level of significance, whether or not there is a difference in the mean blood pressure measured using the two methods. State your hypotheses clearly.
    (8)
  2. State an assumption about the underlying distribution of measured blood pressure required for this test.
    (1)
Edexcel S4 2007 June Q2
2. The value of orders, in \(\pounds\), made to a firm over the internet has distribution \(\mathrm { N } \left( \mu , \sigma ^ { 2 } \right)\). A random sample of \(n\) orders is taken and \(\bar { X }\) denotes the sample mean.
  1. Write down the mean and variance of \(\bar { X }\) in terms of \(\mu\) and \(\sigma ^ { 2 }\). A second sample of \(m\) orders is taken and \(\bar { Y }\) denotes the mean of this sample.
    An estimator of the population mean is given by $$U = \frac { n \bar { X } + m \bar { Y } } { n + m }$$
  2. Show that \(U\) is an unbiased estimator for \(\mu\).
  3. Show that the variance of \(U\) is \(\frac { \sigma ^ { 2 } } { n + m }\).
  4. State which of \(\bar { X }\) or \(U\) is a better estimator for \(\mu\). Give a reason for your answer.
Edexcel S4 2007 June Q3
3. The lengths, \(x \mathrm {~mm}\), of the forewings of a random sample of male and female adult butterflies are measured. The following statistics are obtained from the data.
No. of butterfliesSample mean \(\bar { x }\)\(\sum x ^ { 2 }\)
Females750.617956.5
Males1053.228335.1
  1. Assuming the lengths of the forewings are normally distributed test, at the \(10 \%\) level of significance, whether or not the variances of the two distributions are the same. State your hypotheses clearly.
  2. Stating your hypotheses clearly test, at the \(5 \%\) level of significance, whether the mean length of the forewings of the female butterflies is less than the mean length of the forewings of the male butterflies.
    (6)
Edexcel S4 2007 June Q4
4. The length \(X \mathrm {~mm}\) of a spring made by a machine is normally distributed \(\mathrm { N } \left( \mu , \sigma ^ { 2 } \right)\). A random sample of 20 springs is selected and their lengths measured in mm . Using this sample the unbiased estimates of \(\mu\) and \(\sigma ^ { 2 }\) are $$\bar { x } = 100.6 , \quad s ^ { 2 } = 1.5 .$$ Stating your hypotheses clearly test, at the \(10 \%\) level of significance,
  1. whether or not the variance of the lengths of springs is different from 0.9 ,
  2. whether or not the mean length of the springs is greater than 100 mm .
Edexcel S4 2007 June Q5
5. The number of tornadoes per year to hit a particular town follows a Poisson distribution with mean \(\lambda\). A weatherman claims that due to climate changes the mean number of tornadoes per year has decreased. He records the number of tornadoes \(x\) to hit the town last year. To test the hypotheses \(\mathrm { H } _ { 0 } : \lambda = 7\) and \(\mathrm { H } _ { 1 } : \lambda < 7\), a critical region of \(x \leq 3\) is used.
  1. Find, in terms \(\lambda\) the power function of this test.
  2. Find the size of this test.
  3. Find the probability of a Type II error when \(\lambda = 4\).
Edexcel S4 2007 June Q6
6. A butter packing machine cuts butter into blocks. The weight of a block of butter is normally distributed with a mean weight of 250 g and a standard deviation of 4 g . A random sample of 15 blocks is taken to monitor any change in the mean weight of the blocks of butter.
  1. Find the critical region of a suitable test using a \(2 \%\) level of significance.
    (3)
  2. Assuming the mean weight of a block of butter has increased to 254 g , find the probability of a Type II error.
Edexcel S4 2007 June Q7
7. A doctor wishes to study the level of blood glucose in males. The level of blood glucose is normally distributed. The doctor measured the blood glucose of 10 randomly selected male students from a school. The results, in mmol/litre, are given below. $$\begin{array} { l l l l l l l l l l } 4.7 & 3.6 & 3.8 & 4.7 & 4.1 & 2.2 & 3.6 & 4.0 & 4.4 & 5.0 \end{array}$$
  1. Calculate a \(95 \%\) confidence interval for the mean.
  2. Calculate a 95\% confidence interval for the variance. A blood glucose reading of more than 7 mmol/litre is counted as high.
  3. Use appropriate confidence limits from parts (a) and (b) to find the highest estimate of the proportion of male students in the school with a high blood glucose level. \section*{END}
Edexcel S4 2008 June Q1
  1. A random sample \(X _ { 1 } , X _ { 2 } , \ldots , X _ { 10 }\) is taken from a population with mean \(\mu\) and variance \(\sigma ^ { 2 }\).
    1. Determine the bias, if any, of each of the following estimators of \(\mu\).
    $$\begin{aligned} & \theta _ { 1 } = \frac { X _ { 3 } + X _ { 4 } + X _ { 5 } } { 3 }
    & \theta _ { 2 } = \frac { X _ { 10 } - X _ { 1 } } { 3 }
    & \theta _ { 3 } = \frac { 3 X _ { 1 } + 2 X _ { 2 } + X _ { 10 } } { 6 } \end{aligned}$$
  2. Find the variance of each of these estimators.
  3. State, giving reasons, which of these three estimators for \(\mu\) is
    1. the best estimator,
    2. the worst estimator.
Edexcel S4 2008 June Q2
  1. A large number of students are split into two groups \(A\) and \(B\). The students sit the same test but under different conditions. Group A has music playing in the room during the test, and group B has no music playing during the test. Small samples are then taken from each group and their marks recorded. The marks are normally distributed.
The marks are as follows:
Sample from Group \(A\)424035373443424449
Sample from Group \(B\)40443847383733
  1. Stating your hypotheses clearly, and using a \(10 \%\) level of significance, test whether or not there is evidence of a difference between the variances of the marks of the two groups.
  2. State clearly an assumption you have made to enable you to carry out the test in part (a).
  3. Use a two tailed test, with a \(5 \%\) level of significance, to determine if the playing of music during the test has made any difference in the mean marks of the two groups. State your hypotheses clearly.
  4. Write down what you can conclude about the effect of music on a student's performance during the test.
Edexcel S4 2008 June Q3
  1. The weights, in grams, of mice are normally distributed. A biologist takes a random sample of 10 mice. She weighs each mouse and records its weight.
The ten mice are then fed on a special diet. They are weighed again after two weeks.
Their weights in grams are as follows:
MouseABCD\(E\)\(F\)G\(H\)I\(J\)
Weight before diet50.048.347.554.038.942.750.146.840.341.2
Weight after diet52.147.650.152.342.244.351.848.041.943.6
Stating your hypotheses clearly, and using a \(1 \%\) level of significance, test whether or not the diet causes an increase in the mean weight of the mice.
Edexcel S4 2008 June Q4
4. A town council is concerned that the mean price of renting two bedroom flats in the town has exceeded \(\pounds 650\) per month. A random sample of eight two bedroom flats gave the following results, \(\pounds x\), per month. $$705 , \quad 640 , \quad 560 , \quad 680 , \quad 800 , \quad 620 , \quad 580 , \quad 760$$ [You may assume \(\sum x = 5345 \quad \sum x ^ { 2 } = 3621025\) ]
  1. Find a 90\% confidence interval for the mean price of renting a two bedroom flat.
  2. State an assumption that is required for the validity of your interval in part (a).
  3. Comment on whether or not the town council is justified in being concerned. Give a reason for your answer.
Edexcel S4 2008 June Q5
5. A machine is filling bottles of milk. A random sample of 16 bottles was taken and the volume of milk in each bottle was measured and recorded. The volume of milk in a bottle is normally distributed and the unbiased estimate of the variance, \(s ^ { 2 }\), of the volume of milk in a bottle is 0.003
  1. Find a 95\% confidence interval for the variance of the population of volumes of milk from which the sample was taken. The machine should fill bottles so that the standard deviation of the volumes is equal to 0.07
  2. Comment on this with reference to your 95\% confidence interval.
Edexcel S4 2008 June Q6
  1. A drug is claimed to produce a cure to a certain disease in \(35 \%\) of people who have the disease. To test this claim a sample of 20 people having this disease is chosen at random and given the drug. If the number of people cured is between 4 and 10 inclusive the claim will be accepted. Otherwise the claim will not be accepted.
    1. Write down suitable hypotheses to carry out this test.
    2. Find the probability of making a Type I error.
    The table below gives the value of the probability of the Type II error, to 4 decimal places, for different values of \(p\) where \(p\) is the probability of the drug curing a person with the disease.
    P (cure)0.20.30.40.5
    P (Type II error)0.5880\(r\)0.8565\(s\)
  2. Calculate the value of \(r\) and the value of \(s\).
  3. Calculate the power of the test for \(p = 0.2\) and \(p = 0.4\)
  4. Comment, giving your reasons, on the suitability of this test procedure.
Edexcel S4 2008 June Q7
  1. An engineering firm buys steel rods. The steel rods from its present supplier are known to have a mean tensile strength of \(230 \mathrm {~N} / \mathrm { mm } ^ { 2 }\).
A new supplier of steel rods offers to supply rods at a cheaper price than the present supplier. A random sample of ten rods from this new supplier gave tensile strengths, \(x \mathrm { N } / \mathrm { mm } ^ { 2 }\), which are summarised below.
Sample size\(\Sigma x\)\(\Sigma x ^ { 2 }\)
102283524079
  1. Stating your hypotheses clearly, and using a \(5 \%\) level of significance, test whether or not the rods from the new supplier have a tensile strength lower that the present supplier. (You may assume that the tensile strength is normally distributed).
  2. In the light of your conclusion to part (a) write down what you would recommend the engineering firm to do.
Edexcel S4 2009 June Q1
  1. A company manufactures bolts with a mean diameter of 5 mm . The company wishes to check that the diameter of the bolts has not decreased. A random sample of 10 bolts is taken and the diameters, \(x \mathrm {~mm}\), of the bolts are measured. The results are summarised below.
$$\sum x = 49.1 \quad \sum x ^ { 2 } = 241.2$$ Using a \(1 \%\) level of significance, test whether or not the mean diameter of the bolts is less than 5 mm .
(You may assume that the diameter of the bolts follows a normal distribution.)
Edexcel S4 2009 June Q2
2. An emission-control device is tested to see if it reduces \(\mathrm { CO } _ { 2 }\) emissions from cars. The emissions from 6 randomly selected cars are measured with and without the device. The results are as follows.
CarA\(B\)CDE\(F\)
Emissions without device151.4164.3168.5148.2139.4151.2
Emissions with device148.9162.7166.9150.1140.0146.7
  1. State an assumption that needs to be made in order to carry out a \(t\)-test in this case.
  2. State why a paired \(t\)-test is suitable for use with these data.
  3. Using a \(5 \%\) level of significance, test whether or not there is evidence that the device reduces \(\mathrm { CO } _ { 2 }\) emissions from cars.
  4. Explain, in context, what a type II error would be in this case.
Edexcel S4 2009 June Q3
  1. Define, in terms of \(\mathrm { H } _ { 0 }\) and/or \(\mathrm { H } _ { 1 }\),
    1. the size of a hypothesis test,
    2. the power of a hypothesis test.
    The probability of getting a head when a coin is tossed is denoted by \(p\).
    This coin is tossed 12 times in order to test the hypotheses \(\mathrm { H } _ { 0 } : p = 0.5\) against \(\mathrm { H } _ { 1 } : p \neq 0.5\), using a 5\% level of significance.
  2. Find the largest critical region for this test, such that the probability in each tail is less than 2.5\%.
  3. Given that \(p = 0.4\)
    1. find the probability of a type II error when using this test,
    2. find the power of this test.
  4. Suggest two ways in which the power of the test can be increased.