Edexcel S4 2008 June — Question 1

Exam BoardEdexcel
ModuleS4 (Statistics 4)
Year2008
SessionJune
TopicCentral limit theorem
TypeEstimator properties and bias

  1. A random sample \(X _ { 1 } , X _ { 2 } , \ldots , X _ { 10 }\) is taken from a population with mean \(\mu\) and variance \(\sigma ^ { 2 }\).
    1. Determine the bias, if any, of each of the following estimators of \(\mu\).
    $$\begin{aligned} & \theta _ { 1 } = \frac { X _ { 3 } + X _ { 4 } + X _ { 5 } } { 3 }
    & \theta _ { 2 } = \frac { X _ { 10 } - X _ { 1 } } { 3 }
    & \theta _ { 3 } = \frac { 3 X _ { 1 } + 2 X _ { 2 } + X _ { 10 } } { 6 } \end{aligned}$$
  2. Find the variance of each of these estimators.
  3. State, giving reasons, which of these three estimators for \(\mu\) is
    1. the best estimator,
    2. the worst estimator.