Edexcel S4 2005 June — Question 6

Exam BoardEdexcel
ModuleS4 (Statistics 4)
Year2005
SessionJune
TopicLinear combinations of normal random variables
TypeStandard CI with summary statistics

6. Brickland and Goodbrick are two manufacturers of bricks. The lengths of the bricks produced by each manufacturer can be assumed to be normally distributed. A random sample of 20 bricks is taken from Brickland and the length, \(x \mathrm {~mm}\), of each brick is recorded. The mean of this sample is 207.1 mm and the variance is \(3.2 \mathrm {~mm} ^ { 2 }\).
  1. Calculate the \(98 \%\) confidence interval for the mean length of brick from Brickland. A random sample of 10 bricks is selected from those manufactured by Goodbrick. The length of each brick, \(y \mathrm {~mm}\), is recorded. The results are summarised as follows. $$\sum y = 2046.2 \quad \sum y ^ { 2 } = 418785.4$$ The variances of the length of brick for each manufacturer are assumed to be the same.
  2. Find a \(90 \%\) confidence interval for the value by which the mean length of brick made by Brickland exceeds the mean length of brick made by Goodbrick.