Questions — Edexcel PMT Mocks (92 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel PMT Mocks Q14
14. A population of ants being studied on an island. The number of ants, \(P\), in the population, is modelled by the equation. $$P = \frac { 900 k e ^ { 0.2 t } } { 1 + k e ^ { 0.2 t } } , \text { where } k \text { is a constant. }$$ Given that there were 360 ants when the study started,
a. show that \(k = \frac { 2 } { 3 }\).
b. Show that \(P = \frac { 1800 } { 2 + 3 e ^ { - 0.2 t } }\). The model predicts an upper limit to the number of ants on the island.
c. State the value of this limit.
d. Find the value of \(t\) when \(P = 520\). Give your answer to one decimal place.
e. i. Show that the rate of growth, \(\frac { \mathrm { d } P } { d t } = \frac { P ( 900 - P ) } { 4500 }\)
ii. Hence state the value of \(P\) at which the rate of growth is a maximum.
Edexcel PMT Mocks Q1
  1. Given that \(a\) is a positive constant,
    a. Sketch the graph with equation
$$y = | a - 2 x |$$ Show on your sketch the coordinates of each point at which the graph crosses the \(x\)-axis and \(y\)-axis.
b. Solve the inequality \(| a - 2 x | > x + 2 a\)
Edexcel PMT Mocks Q2
2. Solve $$4 ^ { x - 3 } = 6$$ giving your answer in the form \(a + b \log _ { 2 } 3\), where \(a\) and \(b\) are constants to be found.
Edexcel PMT Mocks Q3
3. Given that $$y = \frac { 1 } { 3 } x ^ { 3 }$$ use differentiation from first principle to show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = x ^ { 2 }$$
Edexcel PMT Mocks Q4
  1. A sequence \(a _ { 1 } , a _ { 2 } , a _ { 3 }\) is defined by
$$a _ { n } = \sin ^ { 2 } \left( \frac { n \pi } { 3 } \right)$$ Find the exact values of
a. i) \(a _ { 1 }\)
ii) \(a _ { 2 }\)
iii) \(a _ { 3 }\)
b. Hence find the exact value of $$\sum _ { n = 1 } ^ { 100 } \left\{ n + \sin ^ { 2 } \left( \frac { n \pi } { 3 } \right) \right\}$$
Edexcel PMT Mocks Q5
  1. The table below shows corresponding values of \(x\) and \(y\) for \(y = \log _ { 3 } ( x )\) The values of \(y\) are given to 2 decimal places as appropriate.
\(x\)34.567.59
\(y\)11.371.631.832
a. Obtain an estimate for \(\int _ { 3 } ^ { 9 } \log _ { 3 } ( x ) \mathrm { d } x\), giving your answer to two decimal places. Use your answer to part (a) and making your method clear, estimate
b. i) \(\int _ { 3 } ^ { 9 } \log _ { 3 } \sqrt { x } \mathrm {~d} x\)
ii) \(\int _ { 3 } ^ { 18 } \log _ { 3 } \left( 9 x ^ { 3 } \right) \mathrm { d } x\)
Edexcel PMT Mocks Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d37eaba2-0a25-4abf-b2c8-1e08673229fb-10_1287_988_278_340} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of part of the curve with equation $$f ( x ) = 4 \cos 2 x - 2 x + 1 \quad x > 0$$ and where \(x\) is measured in radians.
The curve crosses the \(x\)-axis at the point \(A\), as shown in figure 1 .
Given that \(x\)-coordinate of \(A\) is \(\alpha\)
a. show that \(\alpha\) lies between 0.7 and 0.8 Given that \(x\)-coordinates of \(B\) and \(C\) are \(\beta\) and \(\gamma\) respectively and they are two smallest values of \(x\) at which local maxima occur
b. find, using calculus, the value of \(\beta\) and the value of \(\gamma\), giving your answers to 3 significant figures.
c. taking \(x _ { 0 } = 0.7\) or 0.8 as a first approximation to \(\alpha\), apply the Newton-Raphson method once to \(\mathrm { f } ( x )\) to obtain a second approximation to \(\alpha\). Show, your method and give your answer to 2 significant figures.
Edexcel PMT Mocks Q7
7. a. Use the binomial theorem to expand $$( 8 - 3 x ) ^ { \frac { 2 } { 3 } }$$ in ascending powers of \(x\), up to and including the term \(x ^ { 3 }\), as a fully simplifying each term. Edward, a student decides to use the expansion with \(x = \frac { 1 } { 3 }\) to find an approximation for \(( 7 ) ^ { \frac { 2 } { 3 } }\). Using the answer to part (a) and without doing any calculations, b. explain clearly whether Edward's approximation will be an overestimate, or, an underestimate.
Edexcel PMT Mocks Q8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d37eaba2-0a25-4abf-b2c8-1e08673229fb-14_1090_1205_274_456} \captionsetup{labelformat=empty} \caption{Figure 2
Figure 2 shows a sketch of part of the curve with equation $$y = \frac { 12 x - x ^ { 2 } } { \sqrt { x } } , \quad x > 0$$ The region \(R\), shows shaded in figure 2, is bounded by the curve, the line with equation \(x = 4\), the \(x\)-axis and the line with equation \(x = 8\).
Show that the area of the shaded region \(R\) is \(\frac { 128 } { 5 } ( 3 \sqrt { 2 } - 2 )\).}
\end{figure} (5)
Edexcel PMT Mocks Q9
9. $$\mathrm { f } ( \theta ) = 4 \cos \theta + 5 \sin \theta \quad \theta \in R$$ a. Express \(\mathrm { f } ( \theta )\) in the form \(R \cos ( \theta - \alpha )\) where \(R\) and \(\alpha\) are constants, \(R > 0\) and \(0 < \alpha < \frac { \pi } { 2 }\). Give the exact value of \(R\) and give the value of \(\alpha\), in radians, to 3 decimal places. Given that $$\mathrm { g } ( \theta ) = \frac { 135 } { 4 + \mathrm { f } ( \theta ) ^ { 2 } } \quad \theta \in R$$ b.find the range of \(g\).
Edexcel PMT Mocks Q10
10. The functions f and g are defined with their respective domains by $$\begin{array} { l l l } \mathrm { f } ( x ) = 4 - x ^ { 2 } & x \in R & x \geq 0
\mathrm {~g} ( x ) = \frac { 2 } { x + 1 } & x \in R & x \geq 0 \end{array}$$ a. Write down the range of f .
b. Find the value of \(\mathrm { fg } ( 3 )\)
c. Find \(\mathrm { g } ^ { - 1 } ( x )\)
Edexcel PMT Mocks Q11
11. Prove, using algebra that $$n ^ { 2 } + 1$$ is not divisible by 4 .
Edexcel PMT Mocks Q12
12. A curve has equation \(y = \frac { 2 x e ^ { x } } { x + k }\) where \(k\) is a positive constant.
i. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { e ^ { x } \left( 2 x ^ { 2 } + 2 k x + 2 k \right) } { ( x + k ) ^ { 2 } }\)
ii. Given that the curve has exactly one stationary point find the value of \(k\).
Edexcel PMT Mocks Q13
13. Relative to a fixed origin \(O\)
  • the point \(P\) has position vector \(( 0 , - 1,2 )\)
  • the point \(Q\) has position vector \(( 1,1,5 )\)
  • the point \(R\) has position vector ( \(3,5 , m\) )
    where \(m\) is a constant.
    Given that \(P , Q\) and \(R\) lie on a straight line,
    a. find the value of \(m\)
The line segment \(O Q\) is extended to a point \(T\) so that \(\overrightarrow { R T }\) is parallel to \(\overrightarrow { O P }\)
b. Show that \(| \overrightarrow { O T } | = 9 \sqrt { 3 }\).
Edexcel PMT Mocks Q14
14. a. Express \(\frac { 1 } { ( 3 - x ) ( 1 - x ) }\) in partial fractions.
(2) A scientist is studying the mass of a substance in a laboratory.
The mass, \(x\) grams, of a substance at time \(t\) seconds after a chemical reaction starts is modelled by the differential equation $$2 \frac { d x } { d t } = ( 3 - x ) ( 1 - x ) \quad t \geq 0,0 \leq x < 1$$ Given that when \(t = 0 , x = 0\)
b. solve the differential equation and show that the solution can be written as $$x = \frac { 3 \left( e ^ { t } - 1 \right) } { 3 e ^ { t } - 1 }$$ c. Find the mass, \(x\) grams, which has formed 2 seconds after the start of the reaction. Give your answer correct to 3 significant figures.
d. Find the limiting value of \(x\) as \(t\) increases.
Edexcel PMT Mocks Q15
15. The first three terms of a geometric series where \(\theta\) is a constant are $$- 8 \sin \theta , \quad 3 - 2 \cos \theta \quad \text { and } \quad 4 \cot \theta$$ a. Show that \(4 \cos ^ { 2 } \theta + 20 \cos \theta + 9 = 0\) Given that \(\theta\) lies in the interval \(90 ^ { \circ } < \theta < 180 ^ { \circ }\),
b. Find the value of \(\theta\).
c. Hence prove that this series is convergent.
d. Find \(S _ { \infty }\), in the form \(a ( 1 - \sqrt { 3 } )\)
Edexcel PMT Mocks Q16
16. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{d37eaba2-0a25-4abf-b2c8-1e08673229fb-26_1241_1130_251_440} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of the curve \(C\) with parametric equations \(x = - 3 + 6 \sin \theta , \quad y = 9 \cos 2 \theta \quad - \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 4 }\) where \(\theta\) is a parameter.
a. Find an expression for \(\frac { \mathrm { d } y } { \mathrm {~d} x }\) in terms of \(\theta\) The line \(l\) is normal to \(C\) at the point \(P\) where \(\theta = \frac { \pi } { 6 }\)
b. Show that an equation for \(l\) is $$y = \frac { 1 } { 3 } x + \frac { 9 } { 2 }$$ c. The cartesian equation for the curve \(C\) can be written in the form $$y = a - \frac { 1 } { 2 } ( x + b ) ^ { 2 }$$ where \(a\) and \(b\) are integers to be found. The straight line with equation $$y = \frac { 1 } { 3 } x + k$$ where \(k\) is a constant intersects \(C\) at two distinct points.
d. Find the range of possible values for \(k\).