Edexcel PMT Mocks — Question 14

Exam BoardEdexcel
ModulePMT Mocks (PMT Mocks)
TopicDifferential equations

14. A population of ants being studied on an island. The number of ants, \(P\), in the population, is modelled by the equation. $$P = \frac { 900 k e ^ { 0.2 t } } { 1 + k e ^ { 0.2 t } } , \text { where } k \text { is a constant. }$$ Given that there were 360 ants when the study started,
a. show that \(k = \frac { 2 } { 3 }\).
b. Show that \(P = \frac { 1800 } { 2 + 3 e ^ { - 0.2 t } }\). The model predicts an upper limit to the number of ants on the island.
c. State the value of this limit.
d. Find the value of \(t\) when \(P = 520\). Give your answer to one decimal place.
e. i. Show that the rate of growth, \(\frac { \mathrm { d } P } { d t } = \frac { P ( 900 - P ) } { 4500 }\)
ii. Hence state the value of \(P\) at which the rate of growth is a maximum.