- The table below shows corresponding values of \(x\) and \(y\) for \(y = \log _ { 3 } ( x )\) The values of \(y\) are given to 2 decimal places as appropriate.
| \(x\) | 3 | 4.5 | 6 | 7.5 | 9 |
| \(y\) | 1 | 1.37 | 1.63 | 1.83 | 2 |
a. Obtain an estimate for \(\int _ { 3 } ^ { 9 } \log _ { 3 } ( x ) \mathrm { d } x\), giving your answer to two decimal places.
Use your answer to part (a) and making your method clear, estimate
b. i) \(\int _ { 3 } ^ { 9 } \log _ { 3 } \sqrt { x } \mathrm {~d} x\)
ii) \(\int _ { 3 } ^ { 18 } \log _ { 3 } \left( 9 x ^ { 3 } \right) \mathrm { d } x\)