Questions — Edexcel PMT Mocks (92 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel PMT Mocks Q5
5. a. Given that $$\frac { x ^ { 2 } - 1 } { x + 3 } \equiv x + P + \frac { Q } { x + 3 }$$ find the value of the constant \(P\) and show that \(Q = 8\) \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cb92f7b6-2ba5-4703-9595-9ba8570fc52b-07_1082_1271_1363_415} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} The curve \(C\) has equation \(y = \mathrm { g } ( x )\), where $$\mathrm { g } ( x ) = \frac { x ^ { 2 } - 1 } { x + 3 } \quad x > - 3$$ Figure 3 shows a sketch of the curve \(C\).
The region \(R\), shown shaded in Figure 4, is bounded by \(C\), the \(x\)-axis and the line with equation \(x = 5\).
b. Find the exact area of \(R\), writing your answer in the form \(a \ln 2\), where \(a\) is constant to be found.
(4)
Edexcel PMT Mocks Q6
6. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cb92f7b6-2ba5-4703-9595-9ba8570fc52b-09_1152_1006_285_374} \captionsetup{labelformat=empty} \caption{Figure 4}
\end{figure} Figure 4 shows a sketch of the curve \(C\) with equation \(y = \mathrm { f } ( x )\), where $$f ( x ) = \frac { 2 x ^ { 2 } - x } { \sqrt { x } } - 2 \ln \left( \frac { x } { 2 } \right) , \quad x > 0$$ The curve has a minimum turning point at \(Q\), as shown in Figure 4.
a. Show that \(\mathrm { f } ^ { \prime } ( x ) = \frac { 6 x ^ { 2 } - x - 4 \sqrt { x } } { 2 x \sqrt { x } }\)
b. Show that the \(x\)-coordinate of \(Q\) is the solution of $$x = \sqrt { \frac { x } { 6 } + \frac { 2 \sqrt { x } } { 3 } }$$ To find an approximation for the \(x\)-coordinate of \(Q\), the iteration formula $$x _ { n + 1 } = \sqrt { \frac { x _ { n } } { 6 } + \frac { 2 \sqrt { x _ { n } } } { 3 } }$$ is used.
c. Taking \(x _ { 0 } = 0.8\), find the values of \(x _ { 1 } , x _ { 2 }\) and \(x _ { 3 }\). Give your answers to 3 decimal places.
Edexcel PMT Mocks Q7
7. A curve \(C\) has equation \(y = \mathrm { f } ( x )\). Given that
  • \(\mathrm { f } ^ { \prime } ( x ) = 18 x ^ { 2 } + 2 a x + b\)
  • the \(y\)-intercept of \(C\) is - 48
  • the point \(A\), with coordinates \(( - 1,45 )\) lies on \(C\)
    a. Show that \(a - b = 99\)
    b. Find the value of \(a\) and the value of \(b\).
    c. Show that \(( 2 x + 1 )\) is a factor of \(\mathrm { f } ( x )\).
Edexcel PMT Mocks Q8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cb92f7b6-2ba5-4703-9595-9ba8570fc52b-14_976_1296_283_429} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} The curves with equation \(y = 21 - 2 ^ { x }\) meet the curve with equation \(y = 2 ^ { 2 x + 1 }\) at the point \(A\) as shown in Figure 2. Find the exact coordinates of point \(A\).
Edexcel PMT Mocks Q9
9. A cup of tea is cooling down in a room. The temperature of tea, \(\theta ^ { \circ } \mathrm { C }\), at time \(t\) minutes after the tea is made, is modelled by the equation $$\theta = A + 70 e ^ { - 0.025 t }$$ where \(A\) is a positive constant.
Given that the initial temperature of the tea is \(85 ^ { \circ } \mathrm { C }\)
a. find the value of \(A\).
b. Find the temperature of the tea 20 minutes after it is made.
c. Find how long it will take the tea to cool down to \(43 ^ { \circ } \mathrm { C }\).
(4)
Edexcel PMT Mocks Q10
10. a. Show that $$\sin 3 A \equiv 3 \sin A - 4 \sin ^ { 3 } A$$ b. Hence solve, for \(- \frac { \pi } { 2 } \leq \theta \leq \frac { \pi } { 2 }\) the equation $$1 + \sin 3 \theta = \cos ^ { 2 } \theta$$
Edexcel PMT Mocks Q11
  1. a. Sketch the graph of the function with equation
$$y = 11 - 2 | 2 - x |$$ Stating the coordinates of the maximum point and any points where the graph cuts the \(y\)-axis.
b. Solve the equation $$4 x = 11 - 2 | 2 - x |$$ A straight line \(l\) has equation \(y = k x + 13\), where \(k\) is a constant.
Given that \(l\) does not meet or intersect \(y = 11 - 2 | 2 - x |\)
c. find the range of possible value of \(k\).
Edexcel PMT Mocks Q12
12. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{cb92f7b6-2ba5-4703-9595-9ba8570fc52b-21_645_935_301_589} \captionsetup{labelformat=empty} \caption{Figure 5}
\end{figure} Figure 5 shows part of the curve \(C\) with parametric equations $$x = 2 \cos \theta \quad y = \sin 2 \theta \quad 0 \leq \theta \leq \frac { \pi } { 2 }$$ The region \(R\), shown shaded in figure 5, is bounded by the curve \(C\), the line \(x = \sqrt { 2 }\) and the \(x\)-axis. This shaded region is rotated through \(2 \pi\) radians about the \(x\)-axis to form a solid revolution.
a. Show that the volume of the solid of revolution formed is given by the integral. $$k \int _ { \frac { \pi } { 4 } } ^ { \frac { \pi } { 2 } } \sin ^ { 3 } \theta \cos ^ { 2 } \theta \mathrm {~d} \theta$$ where \(k\) is a constant.
\includegraphics[max width=\textwidth, alt={}, center]{cb92f7b6-2ba5-4703-9595-9ba8570fc52b-22_164_1148_54_118}
b. Hence, find the exact value for this volume, giving your answer in the form \(p \pi \sqrt { 2 }\) where \(p\) is a constant.
Edexcel PMT Mocks Q13
13. The function \(g\) is defined by $$\mathrm { g } ( x ) = \frac { 2 e ^ { x } - 5 } { e ^ { x } - 4 } \quad x \neq k , x > 0$$ where \(k\) is a constant.
a. Deduce the value of \(k\).
b. Prove that $$\mathrm { g } ^ { \prime } ( x ) < 0$$ For all values of \(x\) in the domain of g .
c. Find the range of values of \(a\) for which $$\mathrm { g } ( a ) > 0$$
Edexcel PMT Mocks Q14
  1. A circle \(C\) has equation \(x ^ { 2 } + y ^ { 2 } - 6 x - 14 y = 40\).
The line \(l\) has equation \(y = x + k\), where \(k\) is a constant.
a. Show that the \(x\)-coordinate of the points where \(C\) and \(l\) intersect are given by the solutions to the equation $$2 x ^ { 2 } + ( 2 k - 20 ) x + k ^ { 2 } - 14 k - 40 = 0$$ b. Hence find the two values of \(k\) for which \(l\) is a tangent to \(C\).
Edexcel PMT Mocks Q15
15. An infinite geometric series has first four terms \(1 - 2 x + 4 x ^ { 2 } - 8 x ^ { 3 } + \cdots\). The series is convergent.
a. Find the set of possible values of \(x\) for which the series converges. Given that \(\sum _ { r = 1 } ^ { \infty } ( - 2 x ) ^ { r - 1 } = 8\),
b. calculate the value of \(x\).
Edexcel PMT Mocks Q16
16. Prove by contradiction that if \(n ^ { 2 }\) is a multiple of \(3 , n\) is a multiple of 3 .
Edexcel PMT Mocks Q1
  1. The figure 1 shows part of the graph of \(y = \mathrm { f } ( x )\), where \(\mathrm { f } ( x ) = \frac { a x + 4 } { x - b } , \quad x > 2\)
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f9dcb521-6aaa-4496-86e8-2dcd07838e10-02_837_1189_422_518} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} a. State the values of \(a\) and \(b\).
b. State the range of f.
c. Find \(\mathrm { f } ^ { - 1 } ( x )\), stating its domain.
Edexcel PMT Mocks Q2
2. Relative to a fixed origin \(O\),
the point \(A\) has position vector \(( 3 \mathbf { i } - \mathbf { j } + 2 \mathbf { k } )\)
the point \(B\) has position vector ( \(\mathbf { i } + 2 \mathbf { j } - 4 \mathbf { k }\) )
and the point \(C\) has position vector \(( - \mathbf { i } + \mathbf { j } + a \mathbf { k } )\), where \(a\) is a constant and \(a > 0\).
Given that \(| \overrightarrow { B C } | = \sqrt { 41 }\)
a. show that \(a = 2\).
\(D\) is the point such that \(A B C D\) forms a parallelogram.
b. Find the position vector of \(D\).
Edexcel PMT Mocks Q3
3. a. "If \(p\) and \(q\) are irrational numbers, where \(p \neq q , q \neq 0\), then \(\frac { p } { q }\) is also irrational." Disprove this statement by means of a counter example.
b. (i) Sketch the graph of \(y = | x | - 2\).
(ii) Explain why \(| x - 2 | \geq | x | - 2\) for all real values of \(x\).
Edexcel PMT Mocks Q4
4. (a) Show that \(\sum _ { r = 1 } ^ { 20 } \left( 2 ^ { r - 1 } - 3 - 4 r \right) = 1047675\)
(b) A sequence has \(n\)th term \(u _ { n } = \sin \left( 90 n ^ { \circ } \right) n \geq 1\)
  1. Find the order of the sequence.
  2. Find \(\sum _ { r = 1 } ^ { 222 } u _ { r }\)
Edexcel PMT Mocks Q5
5. \(\mathrm { f } ( x ) = \frac { 1 } { 3 } x ^ { 3 } - 4 x - 2\)
a. Show that the equation \(\mathrm { f } ( x ) = 0\) can be written in the form \(x = \pm \sqrt { a + \frac { b } { x } }\), and state the values of the integers \(a\) and \(b\).
\(\mathrm { f } ( x ) = 0\) has one positive root, \(\alpha\).
The iterative formula \(x _ { n + 1 } = \sqrt { a + \frac { b } { x _ { n } } } , \quad x _ { 0 } = 4\) is used to find an approximation value for \(\alpha\).
b. Calculate the values of \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\) to 4 decimal places.
c. Explain why for this question, the Newton-Raphson method cannot be used with \(x _ { 1 } = 2\).
Edexcel PMT Mocks Q6
6. \(\mathrm { f } ( x ) = 2 x ^ { 3 } + 3 x ^ { 2 } - 1\)
a. (i) Show that ( \(2 x - 1\) ) is a factor of \(\mathrm { f } ( x )\).
(ii) Express \(\mathrm { f } ( x )\) in the form \(( 2 x - 1 ) ( x + a ) ^ { 2 }\) where \(a\) is an integer. Using the answer to part a) (ii)
b. show that the equation \(2 p ^ { 6 } + 3 p ^ { 4 } - 1\) has exactly two real solutions and state the values of these roots.
c. deduce the number of real solutions, for \(5 \pi \leq \theta \leq 8 \pi\), to the equation $$2 \cos ^ { 3 } \theta + 3 \cos ^ { 2 } \theta - 1 = 0$$
Edexcel PMT Mocks Q7
  1. (i) Solve \(0 \leq \theta \leq 180 ^ { 0 }\), the equation
$$4 \cos \theta = \sqrt { 3 } \operatorname { cosec } \theta$$ (ii) Solve, for \(0 \leq x \leq 2 \pi\), the equation $$\cos x - \sqrt { 3 } \sin x = \sqrt { 3 }$$
Edexcel PMT Mocks Q8
8. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f9dcb521-6aaa-4496-86e8-2dcd07838e10-14_551_1479_388_365} \captionsetup{labelformat=empty} \caption{Figure 2}
\end{figure} In a competition, competitors are going to kick a ball over the barrier walls. The height of the barrier walls are each 9 metres high and 50 cm wide and stand on horizontal ground. The figure 2 is a graph showing the motion of a ball. The ball reaches a maximum height of 12 metres and hits the ground at a point 80 metres from where its kicked.
a. Find a quadratic equation linking \(Y\) with \(x\) that models this situation. The ball pass over the barrier walls.
b. Use your equation to deduce that the ball should be placed about 20 m from the first barrier wall.
Edexcel PMT Mocks Q9
9. Given that \(x\) is measured in radians, prove, from the first principles, that $$\frac { \mathrm { d } } { \mathrm {~d} x } ( \sin x ) = \cos x$$ You may assume the formula for \(\sin ( A \pm B )\) and that as \(h \rightarrow 0 , \frac { \sin h } { h } \rightarrow 1\) and \(\frac { \cos h - 1 } { h } \rightarrow 0\).
Edexcel PMT Mocks Q10
10. Given that \(y = 8\) at \(x = 1\), solve the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { ( 12 x + 9 ) y ^ { \frac { 1 } { 3 } } } { x }$$ Giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
Edexcel PMT Mocks Q11
11. \(\frac { - 6 x ^ { 2 } + 24 x - 9 } { ( x - 2 ) ( 1 - 3 x ) } \equiv A + \frac { B } { x - 2 } + \frac { C } { 1 - 3 x }\)
a. Find the values of the constants \(A , B\) and \(C\).
b. Using part (a), find \(\mathrm { f } ^ { \prime } ( x )\).
c. Prove that \(\mathrm { f } ( x )\) is an increasing function.
Edexcel PMT Mocks Q12
12. a. Prove that $$\frac { \sec ^ { 2 } x - 1 } { \sec ^ { 2 } x } \equiv \sin ^ { 2 } x$$ b. Hence solve, for \(- 360 ^ { \circ } < x < 360 ^ { \circ }\), the equation $$\frac { \sec ^ { 2 } x - 1 } { \sec ^ { 2 } x } = \frac { \cos 2 x } { 2 }$$
Edexcel PMT Mocks Q13
  1. a. Find \(\int \ln x \mathrm {~d} x\)
\begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{f9dcb521-6aaa-4496-86e8-2dcd07838e10-22_919_1139_276_456} \captionsetup{labelformat=empty} \caption{Figure 3}
\end{figure} Figure 3 shows a sketch of part of the curve with equation $$y = \ln x , \quad x > 0$$ The point P lies on \(C\) and has coordinate \(( e , 1 )\).
The line 1 is a normal to \(C\) at \(P\). The line \(l\) cuts the \(x\)-axis at the point \(Q\).
b. Find the exact value of the \(x\)-coordinate of \(Q\). The finite region \(\mathbf { R }\), shown shaded in figure 3, is bounded by the curve, the line \(l\) and the \(x\)-axis.
c. Find the exact area of \(\mathbf { R }\).