| Exam Board | Edexcel |
| Module | PMT Mocks (PMT Mocks) |
| Topic | Fixed Point Iteration |
5. \(\mathrm { f } ( x ) = \frac { 1 } { 3 } x ^ { 3 } - 4 x - 2\)
a. Show that the equation \(\mathrm { f } ( x ) = 0\) can be written in the form \(x = \pm \sqrt { a + \frac { b } { x } }\), and state the values of the integers \(a\) and \(b\).
\(\mathrm { f } ( x ) = 0\) has one positive root, \(\alpha\).
The iterative formula \(x _ { n + 1 } = \sqrt { a + \frac { b } { x _ { n } } } , \quad x _ { 0 } = 4\) is used to find an approximation value for \(\alpha\).
b. Calculate the values of \(x _ { 1 } , x _ { 2 } , x _ { 3 }\) and \(x _ { 4 }\) to 4 decimal places.
c. Explain why for this question, the Newton-Raphson method cannot be used with \(x _ { 1 } = 2\).