Questions — Edexcel F3 (135 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel F3 2016 June Q1
  1. The curve \(C\) has equation
$$y = 9 \cosh x + 3 \sinh x + 7 x$$ Use differentiation to find the exact \(x\) coordinate of the stationary point of \(C\), giving your answer as a natural logarithm.
Edexcel F3 2016 June Q2
2. An ellipse has equation $$\frac { x ^ { 2 } } { 25 } + \frac { y ^ { 2 } } { 4 } = 1$$ The point \(P\) lies on the ellipse and has coordinates \(( 5 \cos \theta , 2 \sin \theta ) , 0 < \theta < \frac { \pi } { 2 }\) The line \(L\) is a normal to the ellipse at the point \(P\).
  1. Show that an equation for \(L\) is $$5 x \sin \theta - 2 y \cos \theta = 21 \sin \theta \cos \theta$$ Given that the line \(L\) crosses the \(y\)-axis at the point \(Q\) and that \(M\) is the midpoint of \(P Q\),
  2. find the exact area of triangle \(O P M\), where \(O\) is the origin, giving your answer as a multiple of \(\sin 2 \theta\)
    WIHN SIHI NITIIUM ION OC
    VIUV SIHI NI JAHM ION OC
    VI4V SIHI NIS IIIM ION OC
Edexcel F3 2016 June Q3
3. Without using a calculator, find
  1. \(\int _ { - 2 } ^ { 1 } \frac { 1 } { x ^ { 2 } + 4 x + 13 } \mathrm {~d} x\), giving your answer as a multiple of \(\pi\),
  2. \(\int _ { - 1 } ^ { 4 } \frac { 1 } { \sqrt { 4 x ^ { 2 } - 12 x + 34 } } \mathrm {~d} x\), giving your answer in the form \(p \ln ( q + r \sqrt { 2 } )\),
    where \(p , q\) and \(r\) are rational numbers to be found.
Edexcel F3 2016 June Q4
4. $$\mathbf { M } = \left( \begin{array} { r r r } 1 & k & 0
- 1 & 1 & 1
1 & k & 3 \end{array} \right) , \text { where } k \text { is a constant }$$
  1. Find \(\mathbf { M } ^ { - 1 }\) in terms of \(k\). Hence, given that \(k = 0\)
  2. find the matrix \(\mathbf { N }\) such that $$\mathbf { M N } = \left( \begin{array} { r r r } 3 & 5 & 6
    4 & - 1 & 1
    3 & 2 & - 3 \end{array} \right)$$
Edexcel F3 2016 June Q5
5. Given that \(y = \operatorname { artanh } ( \cos x )\)
  1. show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = - \operatorname { cosec } x$$
  2. Hence find the exact value of $$\int _ { 0 } ^ { \frac { \pi } { 6 } } \cos x \operatorname { artanh } ( \cos x ) d x$$ giving your answer in the form \(a \ln ( b + c \sqrt { 3 } ) + d \pi\), where \(a , b , c\) and \(d\) are rational numbers to be found.
    (5)
Edexcel F3 2016 June Q6
6. The coordinates of the points \(A , B\) and \(C\) relative to a fixed origin \(O\) are ( \(1,2,3\) ), \(( - 1,3,4 )\) and \(( 2,1,6 )\) respectively. The plane \(\Pi\) contains the points \(A , B\) and \(C\).
  1. Find a cartesian equation of the plane \(\Pi\). The point \(D\) has coordinates \(( k , 4,14 )\) where \(k\) is a positive constant.
    Given that the volume of the tetrahedron \(A B C D\) is 6 cubic units,
  2. find the value of \(k\).
    VIIIV SIHI NI IIIIM I I O N OAVI4V SIHI NI JIIIM ION OCVJYV SIHI NI JIIIM ION OO
Edexcel F3 2016 June Q7
7. The curve \(C\) has parametric equations $$x = 3 t ^ { 4 } , \quad y = 4 t ^ { 3 } , \quad 0 \leqslant t \leqslant 1$$ The curve \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. The area of the curved surface generated is \(S\).
  1. Show that $$S = k \pi \int _ { 0 } ^ { 1 } t ^ { 5 } \left( t ^ { 2 } + 1 \right) ^ { \frac { 1 } { 2 } } \mathrm {~d} t$$ where \(k\) is a constant to be found.
  2. Use the substitution \(u ^ { 2 } = t ^ { 2 } + 1\) to find the value of \(S\), giving your answer in the form \(p \pi ( 11 \sqrt { 2 } - 4 )\) where \(p\) is a rational number to be found.
Edexcel F3 2016 June Q8
8. $$I _ { n } = \int _ { 0 } ^ { \ln 2 } \tanh ^ { 2 n } x \mathrm {~d} x , \quad n \geqslant 0$$
  1. Show that, for \(n \geqslant 1\)
  2. Hence show that $$\int _ { 0 } ^ { \ln 2 } \tanh ^ { 4 } x \mathrm {~d} x = p + \ln 2$$ where \(p\) is a rational number to be found.
    8. \(\quad I _ { n } = \int _ { 0 } ^ { \ln 2 } \tanh ^ { 2 n } x \mathrm {~d} x , \quad n \geqslant 0\)
  3. Show that, for \(n \geqslant 1\) $$I _ { n } = I _ { n - 1 } - \frac { 1 } { 2 n - 1 } \left( \frac { 3 } { 5 } \right) ^ { 2 n - 1 }$$
Edexcel F3 2017 June Q1
  1. Solve the equation
$$18 \cosh x + 14 \sinh x = 11 + \mathrm { e } ^ { x }$$ Give your answers in the form \(\ln a\), where \(a\) is rational.
Edexcel F3 2017 June Q2
2. $$\mathbf { A } = \left( \begin{array} { r r r } - 1 & 3 & a
2 & 0 & 1
1 & - 2 & 1 \end{array} \right) , \quad \mathbf { B } = \left( \begin{array} { r r r } 2 & 0 & 4
3 & - 2 & 3
1 & 2 & b \end{array} \right)$$ where \(a\) and \(b\) are constants.
  1. Write down \(\mathbf { A } ^ { \mathrm { T } }\) in terms of \(a\).
  2. Calculate \(\mathbf { A B }\), giving your answer in terms of \(a\) and \(b\).
  3. Hence show that $$( \mathbf { A B } ) ^ { \mathrm { T } } = \mathbf { B } ^ { \mathrm { T } } \mathbf { A } ^ { \mathrm { T } }$$
Edexcel F3 2017 June Q3
3. Given that $$y = x - \operatorname { artanh } \left( \frac { 2 x } { 1 + x ^ { 2 } } \right)$$
  1. show that $$1 - \frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { k } { 1 - x ^ { 2 } }$$ where \(k\) is a constant to be found.
  2. Hence, or otherwise, show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + x \left( 1 - \frac { \mathrm { d } y } { \mathrm {~d} x } \right) ^ { 2 } = 0$$
Edexcel F3 2017 June Q4
4. $$\mathbf { M } = \left( \begin{array} { l l l } 1 & 1 & 3
1 & 5 & 1
3 & 1 & 1 \end{array} \right)$$
  1. Show that 6 is an eigenvalue of the matrix \(\mathbf { M }\) and find the other two eigenvalues of \(\mathbf { M }\).
  2. Find a normalised eigenvector corresponding to the eigenvalue 6
Edexcel F3 2017 June Q5
5. $$I _ { n } = \int \operatorname { cosec } ^ { n } x \mathrm {~d} x , \quad 0 < x < \frac { \pi } { 2 } , \quad n \geqslant 0$$
  1. Show that, for \(n \geqslant 2\) $$I _ { n } = \frac { n - 2 } { n - 1 } I _ { n - 2 } - \frac { 1 } { n - 1 } \cot x \operatorname { cosec } ^ { n - 2 } x$$
  2. Hence, or otherwise, find $$\int \operatorname { cosec } ^ { 4 } x \mathrm {~d} x$$ giving your answer in terms of \(\cot x\).
Edexcel F3 2017 June Q6
  1. The hyperbola \(H\) has equation \(\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1\)
    and the ellipse \(E\) has equation \(\frac { x ^ { 2 } } { a ^ { 2 } } + \frac { y ^ { 2 } } { b ^ { 2 } } = 1\)
    where \(a > b > 0\)
    The line \(l\) is a tangent to hyperbola \(H\) at the point \(P ( a \sec \theta , b \tan \theta )\), where \(0 < \theta < \frac { \pi } { 2 }\)
    1. Using calculus, show that an equation for \(l\) is
    $$b x \sec \theta - a y \tan \theta = a b$$ Given that the point \(F\) is the focus of ellipse \(E\) for which \(x > 0\) and that the line \(l\) passes through \(F\),
  2. show that \(l\) is parallel to the line \(y = x\)
Edexcel F3 2017 June Q7
  1. (a) Find
$$\int \frac { 5 + x } { \sqrt { 4 - 3 x ^ { 2 } } } \mathrm {~d} x$$ (b) Hence find the exact value of $$\int _ { 0 } ^ { 1 } \frac { 5 + x } { \sqrt { 4 - 3 x ^ { 2 } } } d x$$ giving your answer in the form \(p \pi \sqrt { 3 } + q\), where \(p\) and \(q\) are rational numbers to be found.
Edexcel F3 2017 June Q8
8. The curve \(C\) has parametric equations $$x = \theta - \sin \theta , \quad y = 1 - \cos \theta , \quad 0 \leqslant \theta \leqslant 2 \pi$$ The curve \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis. The area of the curved surface generated is given by \(S\).
  1. Show that $$S = 2 \pi \sqrt { 2 } \int _ { 0 } ^ { 2 \pi } ( 1 - \cos \theta ) ^ { \frac { 3 } { 2 } } \mathrm {~d} \theta$$
  2. Hence find the exact value of \(S\).
Edexcel F3 2017 June Q9
9 With respect to a fixed origin \(O\), the points \(A ( - 1,5,1 ) , B ( 1,0,3 ) , C ( 2 , - 1,2 )\) and \(D ( 3,6 , - 1 )\) are the vertices of a tetrahedron.
  1. Find the volume of the tetrahedron \(A B C D\). The plane \(\Pi\) contains the points \(A , B\) and \(C\).
  2. Find a cartesian equation of \(\Pi\). The point \(T\) lies on the plane \(\Pi\). The line \(D T\) is perpendicular to \(\Pi\).
  3. Find the exact coordinates of the point \(T\).
Edexcel F3 2018 June Q1
  1. Solve the equation
$$15 \operatorname { sech } ^ { 2 } x + 7 \tanh x = 13$$ Give your answers in terms of simplified natural logarithms.
Edexcel F3 2018 June Q2
2. $$\mathbf { A } = \left( \begin{array} { l l } 3 & 2
2 & 6 \end{array} \right)$$
  1. Find the eigenvalues and corresponding normalised eigenvectors of the matrix \(\mathbf { A }\).
  2. Write down a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { P } ^ { \mathrm { T } } \mathbf { A P } = \mathbf { D }\).
Edexcel F3 2018 June Q3
3. Given that $$y = \arctan \left( \frac { \sin x } { \cos x - 1 } \right) \quad x \neq 2 n \pi , \quad n \in \mathbb { Z }$$ Show that $$\frac { \mathrm { d } y } { \mathrm {~d} x } = k$$ where \(k\) is a constant to be found.
\(\_\_\_\_\) "
Edexcel F3 2018 June Q4
4. The hyperbola \(H\) has equation $$\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1$$ The line \(l\) is a normal to \(H\) at the point \(P ( a \sec \theta , b \tan \theta ) , 0 < \theta < \frac { \pi } { 2 }\)
  1. Using calculus, show that an equation for \(l\) is $$a x \sin \theta + b y = \left( a ^ { 2 } + b ^ { 2 } \right) \tan \theta$$ The line \(l\) meets the \(x\)-axis at the point \(Q\), and the point \(M\) is the midpoint of \(P Q\).
  2. Find the coordinates of \(M\).
  3. Hence find the cartesian equation of the locus of \(M\) as \(\theta\) varies, giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).
Edexcel F3 2018 June Q5
5. $$\mathbf { M } = \left( \begin{array} { r r r } 4 & - 5 & 0
k & 2 & 0
- 3 & - 5 & k \end{array} \right) \text {, where } k \text { is a real constant, } k \neq 0 , k \neq - \frac { 8 } { 5 }$$
  1. Find, in terms of \(k\), the inverse of the matrix \(\mathbf { M }\). A transformation \(T : \mathbb { R } ^ { 3 } \rightarrow \mathbb { R } ^ { 3 }\) is represented by the matrix $$\left( \begin{array} { r r r } 4 & - 5 & 0
    - 1 & 2 & 0
    - 3 & - 5 & - 1 \end{array} \right)$$ The transformation \(T\) maps the plane \(\Pi _ { 1 }\) onto the plane \(\Pi _ { 2 }\)
    Given that the plane \(\Pi _ { 2 }\) has equation \(2 x - z = 4\)
  2. find a cartesian equation of the plane \(\Pi _ { 1 }\)
Edexcel F3 2018 June Q6
6. The curve \(C\) has parametric equations $$x = \theta - \tanh \theta , \quad y = \operatorname { sech } \theta , \quad 0 \leqslant \theta \leqslant \ln 3$$
  1. Find
    1. \(\frac { \mathrm { d } x } { \mathrm {~d} \theta }\)
    2. \(\frac { \mathrm { d } y } { \mathrm {~d} \theta }\) The curve \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis.
  2. Find the exact area of the curved surface formed, giving your answer as a multiple of \(\pi\).
Edexcel F3 2018 June Q7
7. The plane \(\Pi _ { 1 }\) has equation \(x + y + z = 3\) and the plane \(\Pi _ { 2 }\) has equation \(2 x + 3 y - z = 4\) The planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\) intersect in the line \(L\).
  1. Find a cartesian equation for the line \(L\). The plane \(\Pi _ { 3 }\) has equation $$\text { r. } \left( \begin{array} { r } 5
    - 4
    4 \end{array} \right) = 12$$ The line \(L\) meets the plane \(\Pi _ { 3 }\) at the point \(A\).
  2. Find the coordinates of \(A\).
  3. Find the acute angle between \(\overrightarrow { O A }\) and the line \(L\), where \(O\) is the origin. Give your answer in degrees to one decimal place.
Edexcel F3 2018 June Q8
8. $$I _ { n } = \int \frac { x ^ { n } } { \sqrt { \left( x ^ { 2 } + k ^ { 2 } \right) } } \mathrm { d } x \quad \text { where } k \text { is a constant and } n \in \mathbb { Z } ^ { + }$$
  1. Show that, for \(n \geqslant 2\) $$I _ { n } = \frac { x ^ { n - 1 } } { n } \left( x ^ { 2 } + k ^ { 2 } \right) ^ { \frac { 1 } { 2 } } - \frac { ( n - 1 ) } { n } k ^ { 2 } I _ { n - 2 }$$
  2. Hence find the exact value of $$\int _ { 0 } ^ { 1 } \frac { x ^ { 5 } } { \sqrt { \left( x ^ { 2 } + 1 \right) } } \mathrm { d } x$$