Edexcel F3 2018 June — Question 4

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2018
SessionJune
TopicConic sections

4. The hyperbola \(H\) has equation $$\frac { x ^ { 2 } } { a ^ { 2 } } - \frac { y ^ { 2 } } { b ^ { 2 } } = 1$$ The line \(l\) is a normal to \(H\) at the point \(P ( a \sec \theta , b \tan \theta ) , 0 < \theta < \frac { \pi } { 2 }\)
  1. Using calculus, show that an equation for \(l\) is $$a x \sin \theta + b y = \left( a ^ { 2 } + b ^ { 2 } \right) \tan \theta$$ The line \(l\) meets the \(x\)-axis at the point \(Q\), and the point \(M\) is the midpoint of \(P Q\).
  2. Find the coordinates of \(M\).
  3. Hence find the cartesian equation of the locus of \(M\) as \(\theta\) varies, giving your answer in the form \(y ^ { 2 } = \mathrm { f } ( x )\).