4.
$$\mathbf { M } = \left( \begin{array} { r r r }
1 & k & 0
- 1 & 1 & 1
1 & k & 3
\end{array} \right) , \text { where } k \text { is a constant }$$
- Find \(\mathbf { M } ^ { - 1 }\) in terms of \(k\).
Hence, given that \(k = 0\)
- find the matrix \(\mathbf { N }\) such that
$$\mathbf { M N } = \left( \begin{array} { r r r }
3 & 5 & 6
4 & - 1 & 1
3 & 2 & - 3
\end{array} \right)$$