Edexcel F3 2017 June — Question 5

Exam BoardEdexcel
ModuleF3 (Further Pure Mathematics 3)
Year2017
SessionJune
TopicReduction Formulae

5. $$I _ { n } = \int \operatorname { cosec } ^ { n } x \mathrm {~d} x , \quad 0 < x < \frac { \pi } { 2 } , \quad n \geqslant 0$$
  1. Show that, for \(n \geqslant 2\) $$I _ { n } = \frac { n - 2 } { n - 1 } I _ { n - 2 } - \frac { 1 } { n - 1 } \cot x \operatorname { cosec } ^ { n - 2 } x$$
  2. Hence, or otherwise, find $$\int \operatorname { cosec } ^ { 4 } x \mathrm {~d} x$$ giving your answer in terms of \(\cot x\).