Questions — Edexcel F2 (137 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
Edexcel F2 2016 June Q1
  1. (a) Express \(\frac { 1 } { 4 r ^ { 2 } - 1 }\) in partial fractions.
    (b) Hence prove that
$$\sum _ { r = 1 } ^ { n } \frac { 1 } { 4 r ^ { 2 } - 1 } = \frac { n } { 2 n + 1 }$$ (c) Find the exact value of $$\sum _ { r = 9 } ^ { 25 } \frac { 5 } { 4 r ^ { 2 } - 1 }$$
Edexcel F2 2016 June Q2
2. Use algebra to find the set of values of \(x\) for which $$\left| x ^ { 2 } - 9 \right| < | 1 - 2 x |$$
Edexcel F2 2016 June Q3
  1. Find, in terms of \(k\), where \(k\) is a positive integer, the general solution of the differential equation
$$( 1 + x ) \frac { \mathrm { d } y } { \mathrm {~d} x } + k y = x ^ { \frac { 1 } { 2 } } ( 1 + x ) ^ { 2 - k } , \quad x > 0$$ giving your answer in the form \(y = \mathrm { f } ( x )\).
(6)
Edexcel F2 2016 June Q4
4. $$f ( x ) = \sin \left( \frac { 3 } { 2 } x \right)$$
  1. Find the Taylor series expansion for \(\mathrm { f } ( x )\) about \(\frac { \pi } { 3 }\) in ascending powers of \(\left( x - \frac { \pi } { 3 } \right)\) up to and including the term in \(\left( x - \frac { \pi } { 3 } \right) ^ { 4 }\)
  2. Hence obtain an estimate of \(\sin \frac { 1 } { 2 }\), giving your answer to 4 decimal places.
Edexcel F2 2016 June Q5
5. The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by $$w = \frac { 2 z - 1 } { z + 3 } , \quad z \neq - 3$$ The circle in the \(z\)-plane with equation \(x ^ { 2 } + y ^ { 2 } = 1\), where \(z = x + \mathrm { i } y\), is mapped by \(T\) onto the circle \(C\) in the \(w\)-plane. Find the centre and the radius of \(C\).
Edexcel F2 2016 June Q6
6. (a) Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = 3 x ^ { 2 } + 2 x + 1$$ (9)
(b) Find the particular solution of this differential equation for which \(y = 0\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 0\) when \(x = 0\)
(5)
Edexcel F2 2016 June Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{84aadcb2-399f-4168-94c6-4e6ed0450d6d-12_866_1026_274_468} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curves \(C _ { 1 }\) and \(C _ { 2 }\) with polar equations $$\begin{array} { l l } C _ { 1 } : r = \frac { 3 } { 2 } \cos \theta , & 0 \leqslant \theta \leqslant \frac { \pi } { 2 }
C _ { 2 } : r = 3 \sqrt { 3 } - \frac { 9 } { 2 } \cos \theta , & 0 \leqslant \theta \leqslant \frac { \pi } { 2 } \end{array}$$ The curves intersect at the point \(P\).
  1. Find the polar coordinates of \(P\). The region \(R\), shown shaded in Figure 1, is enclosed by the curves \(C _ { 1 }\) and \(C _ { 2 }\) and the initial line.
  2. Find the exact area of \(R\), giving your answer in the form \(p \pi + q \sqrt { 3 }\) where \(p\) and \(q\) are rational numbers to be found.
Edexcel F2 2016 June Q8
8. (a) Use de Moivre's theorem to show that $$\cos ^ { 5 } \theta \equiv p \cos 5 \theta + q \cos 3 \theta + r \cos \theta$$ where \(p , q\) and \(r\) are rational numbers to be found.
(b) Hence, showing all your working, find the exact value of $$\int _ { \frac { \pi } { 6 } } ^ { \frac { \pi } { 3 } } \cos ^ { 5 } \theta \mathrm {~d} \theta$$
Edexcel F2 2016 June Q9
9. The complex number \(z\) is represented by the point \(P\) in an Argand diagram. Given that \(\arg \left( \frac { z - 5 } { z - 2 } \right) = \frac { \pi } { 4 }\)
  1. sketch the locus of \(P\) as \(z\) varies,
  2. find the exact maximum value of \(| z |\).
    VILM SIHI NITIIIUMI ON OC
    VILV SIHI NI III HM ION OC
    VALV SIHI NI JIIIM ION OO
Edexcel F2 2017 June Q1
  1. Solve the equation
$$z ^ { 5 } = 32$$ Give your answers in the form \(r ( \cos \theta + \mathrm { i } \sin \theta )\), where \(r > 0\) and \(0 \leqslant \theta < 2 \pi\)
Edexcel F2 2017 June Q2
  1. Use algebra to find the set of values of \(x\) for which
$$\frac { x - 4 } { ( x + 3 ) } \leqslant \frac { 5 } { x ( x + 3 ) }$$
Edexcel F2 2017 June Q3
3. (a) Show that \(r ^ { 3 } - ( r - 1 ) ^ { 3 } \equiv 3 r ^ { 2 } - 3 r + 1\)
(b) Hence prove by the method of differences that, for \(n \in \mathbb { Z } ^ { + }\) $$\sum _ { r = 1 } ^ { n } r ^ { 2 } = \frac { n ( n + 1 ) ( 2 n + 1 ) } { 6 }$$ [You may use \(\sum _ { r = 1 } ^ { n } r = \frac { n ( n + 1 ) } { 2 }\) without proof.]
Edexcel F2 2017 June Q4
4. $$y = 3 \mathrm { e } ^ { - x } \cos 3 x + A \mathrm { e } ^ { - x } \sin 3 x$$ is a particular integral of the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } - 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + 10 y = 40 \mathrm { e } ^ { - x } \sin 3 x$$ where \(A\) is a constant.
  1. Find the value of \(A\).
  2. Hence find the general solution of this differential equation.
  3. Find the particular solution of this differential equation for which both \(y = 3\) and \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 3\) at \(x = 0\)
Edexcel F2 2017 June Q5
5. $$y = \mathrm { e } ^ { \cos ^ { 2 } x }$$
  1. Show that $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \mathrm { e } ^ { \cos ^ { 2 } x } \left( \sin ^ { 2 } 2 x - 2 \cos 2 x \right)$$
  2. Hence find the Maclaurin series expansion of \(\mathrm { e } ^ { \cos ^ { 2 } x }\) up to and including the term in \(x ^ { 2 }\)
Edexcel F2 2017 June Q6
  1. Find the general solution of the differential equation
$$\cos x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y \sin x = \left( \cos ^ { 2 } x \right) \ln x , \quad 0 < x < \frac { \pi } { 2 }$$ Give your answer in the form \(y = \mathrm { f } ( x )\).
Edexcel F2 2017 June Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{2026c49f-243b-497a-b702-e40d012ad308-20_465_1070_255_507} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} Figure 1 shows a sketch of the curve \(C\) with polar equation $$r = 4 \cos 2 \theta , \quad - \frac { \pi } { 4 } \leqslant \theta \leqslant \frac { \pi } { 4 } \text { and } \frac { 3 \pi } { 4 } \leqslant \theta \leqslant \frac { 5 \pi } { 4 }$$ The lines \(P Q , Q R , R S\) and \(S P\) are tangents to \(C\), where \(Q R\) and \(S P\) are parallel to the initial line and \(P Q\) and \(R S\) are perpendicular to the initial line.
  1. Find the polar coordinates of the points where the tangent SP touches the curve. Give the values of \(\theta\) to 3 significant figures.
  2. Find the exact area of the finite region bounded by the curve \(C\), shown unshaded in Figure 1.
  3. Find the area enclosed by the rectangle \(P Q R S\) but outside the curve \(C\), shown shaded in Figure 1.
Edexcel F2 2017 June Q8
  1. (a) Use de Moivre's theorem to
    1. show that
    $$\cos 5 \theta \equiv \cos ^ { 5 } \theta - 10 \cos ^ { 3 } \theta \sin ^ { 2 } \theta + 5 \cos \theta \sin ^ { 4 } \theta$$
  2. find an expression for \(\sin 5 \theta\) in terms of \(\cos \theta\) and \(\sin \theta\)
    (b) Hence show that $$\tan 5 \theta = \frac { t ^ { 5 } - 10 t ^ { 3 } + 5 t } { 5 t ^ { 4 } - 10 t ^ { 2 } + 1 }$$ where \(t = \tan \theta\) and \(\cos 5 \theta \neq 0\)
    (c) Hence find a quadratic equation whose roots \(\operatorname { are } ^ { 2 } \tan ^ { 2 } \frac { \pi } { 5 }\) and \(\tan ^ { 2 } \frac { 2 \pi } { 5 }\) Give your answer in the form \(a x ^ { 2 } + b x + c = 0\) where \(a , b\) and \(c\) are integers to be found.
    (d) Deduce that \(\tan \frac { \pi } { 5 } \tan \frac { 2 \pi } { 5 } = \sqrt { 5 }\)
    END
Edexcel F2 2020 June Q2
2. (a) Write \(\frac { 3 r + 1 } { r ( r - 1 ) ( r + 1 ) }\) in partial fractions.
(b) Hence find $$\sum _ { r = 2 } ^ { n } \frac { 3 r + 1 } { r ( r - 1 ) ( r + 1 ) } \quad n \geqslant 2$$ giving your answer in the form $$\frac { a n ^ { 2 } + b n + c } { 2 n ( n + 1 ) }$$ where \(a\), \(b\) and \(c\) are integers to be determined.
(c) Hence determine the exact value of $$\sum _ { r = 15 } ^ { 20 } \frac { 3 r + 1 } { r ( r - 1 ) ( r + 1 ) }$$
VIXV SIHII NI JIIIM ION OCVIAN SIHI NI JYHM ION OOVAYV SIHI NI JIIIM ION OO
Edexcel F2 2020 June Q3
3. Use algebra to obtain the set of values of \(x\) for which $$\left| \frac { x ^ { 2 } + 3 x + 10 } { x + 2 } \right| < 7 - x$$
Edexcel F2 2020 June Q4
4. (a) Express the complex number \(18 \sqrt { 3 } - 18 \mathrm { i }\) in the form $$r ( \cos \theta + \mathrm { i } \sin \theta ) \quad - \pi < \theta \leqslant \pi$$ (b) Solve the equation $$z ^ { 4 } = 18 \sqrt { 3 } - 18 i$$ giving your answers in the form \(r \mathrm { e } ^ { \mathrm { i } \theta }\) where \(- \pi < \theta \leqslant \pi\)
VIXV SIHIANI III IM IONOOVIAV SIHI NI JYHAM ION OOVI4V SIHI NI JLIYM ION OO
Edexcel F2 2020 June Q5
5. The transformation \(T\) from the \(z\)-plane to the \(w\)-plane is given by $$w = \frac { z - 3 \mathrm { i } } { z + 2 \mathrm { i } } \quad z \neq - 2 \mathrm { i }$$ The circle with equation \(| z | = 1\) in the \(z\)-plane is mapped by \(T\) onto the circle \(C\) in the \(w\)-plane. Determine
  1. the centre of \(C\),
  2. the radius of \(C\).
Edexcel F2 2020 June Q6
6. Obtain the general solution of the equation $$x ^ { 2 } \frac { \mathrm {~d} y } { \mathrm {~d} x } + ( x \cot x + 2 ) x y = 4 \sin x \quad 0 < x < \pi$$ Give your answer in the form \(y = \mathrm { f } ( x )\)
(8)
Edexcel F2 2020 June Q7
7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{17b48fd7-5e88-4a62-beb9-8590a363e70f-20_476_972_251_488} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve \(C\), shown in Figure 1, has polar equation $$r = 2 a ( 1 + \cos \theta ) \quad 0 \leqslant \theta \leqslant \pi$$ where \(a\) is a positive constant. The tangent to \(C\) at the point \(A\) is parallel to the initial line.
  1. Determine the polar coordinates of \(A\). The point \(B\) on the curve has polar coordinates \(\quad a ( 2 + \sqrt { 3 } ) , \frac { \pi } { 6 }\) The finite region \(R\), shown shaded in Figure 1, is bounded by the curve \(C\) and the line \(A B\).
  2. Use calculus to determine the exact area of the shaded region \(R\). Give your answer in the form $$\frac { a ^ { 2 } } { 4 } ( d \pi - e + f \sqrt { 3 } )$$ where \(d , e\) and \(f\) are integers.
Edexcel F2 2020 June Q8
8. (a) Show that the transformation \(x = \mathrm { e } ^ { u }\) transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 x \frac { \mathrm {~d} y } { \mathrm {~d} x } - 8 y = 4 \ln x \quad x > 0$$ into the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} u ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} u } - 8 y = 4 u$$ (b) Determine the general solution of differential equation (II), expressing \(y\) as a function of \(u\).
(c) Hence obtain the general solution of differential equation (I).
VIXV SIHIANI III IM IONOOVIAV SIHI NI JYHAM ION OOVI4V SIHI NI JLIYM ION OO
Edexcel F2 2021 June Q1
  1. (a) Express \(\frac { 2 } { r \left( r ^ { 2 } - 1 \right) }\) in partial fractions.
    (b) Hence find, in terms of \(n\),
$$\sum _ { r = 2 } ^ { n } \frac { 1 } { r \left( r ^ { 2 } - 1 \right) }$$ Give your answer in the form $$\frac { n ^ { 2 } + A n + B } { C n ( n + 1 ) }$$ where \(A\), \(B\) and \(C\) are constants to be found.