Edexcel F2 2020 June — Question 8

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2020
SessionJune
TopicSecond order differential equations

8. (a) Show that the transformation \(x = \mathrm { e } ^ { u }\) transforms the differential equation $$x ^ { 2 } \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 3 x \frac { \mathrm {~d} y } { \mathrm {~d} x } - 8 y = 4 \ln x \quad x > 0$$ into the differential equation $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} u ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} u } - 8 y = 4 u$$ (b) Determine the general solution of differential equation (II), expressing \(y\) as a function of \(u\).
(c) Hence obtain the general solution of differential equation (I).
VIXV SIHIANI III IM IONOOVIAV SIHI NI JYHAM ION OOVI4V SIHI NI JLIYM ION OO