First order differential equations (integrating factor)
Find the general solution of the differential equation
$$\cos x \frac { \mathrm {~d} y } { \mathrm {~d} x } + y \sin x = \left( \cos ^ { 2 } x \right) \ln x , \quad 0 < x < \frac { \pi } { 2 }$$
Give your answer in the form \(y = \mathrm { f } ( x )\).