A-Level Maths
Courses
Papers
Questions
Search
Courses
UFM Pure
Complex numbers 2
Q8
Edexcel F2 2017 June — Question 8
Exam Board
Edexcel
Module
F2 (Further Pure Mathematics 2)
Year
2017
Session
June
Topic
Complex numbers 2
(a) Use de Moivre's theorem to
show that
$$\cos 5 \theta \equiv \cos ^ { 5 } \theta - 10 \cos ^ { 3 } \theta \sin ^ { 2 } \theta + 5 \cos \theta \sin ^ { 4 } \theta$$
find an expression for \(\sin 5 \theta\) in terms of \(\cos \theta\) and \(\sin \theta\)
(b) Hence show that $$\tan 5 \theta = \frac { t ^ { 5 } - 10 t ^ { 3 } + 5 t } { 5 t ^ { 4 } - 10 t ^ { 2 } + 1 }$$ where \(t = \tan \theta\) and \(\cos 5 \theta \neq 0\)
(c) Hence find a quadratic equation whose roots \(\operatorname { are } ^ { 2 } \tan ^ { 2 } \frac { \pi } { 5 }\) and \(\tan ^ { 2 } \frac { 2 \pi } { 5 }\) Give your answer in the form \(a x ^ { 2 } + b x + c = 0\) where \(a , b\) and \(c\) are integers to be found.
(d) Deduce that \(\tan \frac { \pi } { 5 } \tan \frac { 2 \pi } { 5 } = \sqrt { 5 }\)
END
This paper
(8 questions)
View full paper
Q1
Q2
Q3
Q4
Q5
Q6
Q7
Q8