Edexcel F2 2020 June — Question 7

Exam BoardEdexcel
ModuleF2 (Further Pure Mathematics 2)
Year2020
SessionJune
TopicPolar coordinates

7. \begin{figure}[h]
\includegraphics[alt={},max width=\textwidth]{17b48fd7-5e88-4a62-beb9-8590a363e70f-20_476_972_251_488} \captionsetup{labelformat=empty} \caption{Figure 1}
\end{figure} The curve \(C\), shown in Figure 1, has polar equation $$r = 2 a ( 1 + \cos \theta ) \quad 0 \leqslant \theta \leqslant \pi$$ where \(a\) is a positive constant. The tangent to \(C\) at the point \(A\) is parallel to the initial line.
  1. Determine the polar coordinates of \(A\). The point \(B\) on the curve has polar coordinates \(\quad a ( 2 + \sqrt { 3 } ) , \frac { \pi } { 6 }\) The finite region \(R\), shown shaded in Figure 1, is bounded by the curve \(C\) and the line \(A B\).
  2. Use calculus to determine the exact area of the shaded region \(R\). Give your answer in the form $$\frac { a ^ { 2 } } { 4 } ( d \pi - e + f \sqrt { 3 } )$$ where \(d , e\) and \(f\) are integers.