Questions — CAIE (7279 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE FP1 2017 November Q9
Standard +0.8
9 The curve \(C\) has equation $$y = \frac { 3 x - 9 } { ( x - 2 ) ( x + 1 ) }$$
  1. Find the equations of the asymptotes of \(C\).
    \includegraphics[max width=\textwidth, alt={}, center]{68e31138-756a-433a-bf42-0fdfadad091e-14_61_1566_513_328}
  2. Show that there is no point on \(C\) for which \(\frac { 1 } { 3 } < y < 3\).
  3. Find the coordinates of the turning points of \(C\).
  4. Sketch \(C\).
CAIE FP1 2018 November Q1
Moderate -0.5
1 The vectors \(\mathbf { a } , \mathbf { b } , \mathbf { c }\) and \(\mathbf { d }\) in \(\mathbb { R } ^ { 3 }\) are given by $$\mathbf { a } = \left( \begin{array} { l } 1
CAIE FP1 2018 November Q2
Moderate -0.5
2
1 \end{array} \right) , \quad \mathbf { b } = \left( \begin{array} { l } 2
9
0 \end{array} \right) , \quad \mathbf { c } = \left( \begin{array} { l }
CAIE FP1 2018 November Q4
Standard +0.8
4 \end{array} \right) \quad \text { and } \quad \mathbf { d } = \left( \begin{array} { r } 0
- 8
3 \end{array} \right) .$$
  1. Show that \(\{ \mathbf { a } , \mathbf { b } , \mathbf { c } \}\) is a basis for \(\mathbb { R } ^ { 3 }\).
  2. Express \(\mathbf { d }\) in terms of \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\).\\ 2 The roots of the equation $$x ^ { 3 } + p x ^ { 2 } + q x + r = 0$$ are \(\alpha , 2 \alpha , 4 \alpha\), where \(p , q , r\) and \(\alpha\) are non-zero real constants.
  3. Show that $$2 p \alpha + q = 0$$
  4. Show that $$p ^ { 3 } r - q ^ { 3 } = 0$$ 3 The sequence of positive numbers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } < 3\) and, for \(n \geqslant 1\), $$u _ { n + 1 } = \frac { 4 u _ { n } + 9 } { u _ { n } + 4 }$$
  5. By considering \(3 - u _ { n + 1 }\), or otherwise, prove by mathematical induction that \(u _ { n } < 3\) for all positive integers \(n\).
  6. Show that \(u _ { n + 1 } > u _ { n }\) for \(n \geqslant 1\).\\ 4 A curve is defined parametrically by $$x = t - \frac { 1 } { 2 } \sin 2 t \quad \text { and } \quad y = \sin ^ { 2 } t$$ The arc of the curve joining the point where \(t = 0\) to the point where \(t = \pi\) is rotated through one complete revolution about the \(x\)-axis. The area of the surface generated is denoted by \(S\).
  7. Show that $$S = a \pi \int _ { 0 } ^ { \pi } \sin ^ { 3 } t \mathrm {~d} t$$ where the constant \(a\) is to be found.
  8. Using the result \(\sin 3 t = 3 \sin t - 4 \sin ^ { 3 } t\), find the exact value of \(S\).
CAIE FP1 2018 November Q5
Standard +0.3
5 It is given that \(\lambda\) is an eigenvalue of the matrix \(\mathbf { A }\) with \(\mathbf { e }\) as a corresponding eigenvector, and \(\mu\) is an eigenvalue of the matrix \(\mathbf { B }\) for which \(\mathbf { e }\) is also a corresponding eigenvector.
  1. Show that \(\lambda + \mu\) is an eigenvalue of the matrix \(\mathbf { A } + \mathbf { B }\) with \(\mathbf { e }\) as a corresponding eigenvector.
    The matrix \(\mathbf { A }\), given by $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 0 & 1 \\ - 1 & 2 & 3 \\ 1 & 0 & 2 \end{array} \right)$$ has \(\left( \begin{array} { l } 1 \\ 2 \\ 1 \end{array} \right) , \left( \begin{array} { r } 1 \\ 4 \\ - 1 \end{array} \right)\) and \(\left( \begin{array} { l } 0 \\ 1 \\ 0 \end{array} \right)\) as eigenvectors.
  2. Find the corresponding eigenvalues.
    The matrix \(\mathbf { B }\) has eigenvalues 4, 5 and 1 with corresponding eigenvectors \(\left( \begin{array} { l } 1 \\ 2 \\ 1 \end{array} \right) , \left( \begin{array} { r } 1 \\ 4 \\ - 1 \end{array} \right)\) and \(\left( \begin{array} { l } 0 \\ 1 \\ 0 \end{array} \right)\) respectively.
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } + \mathbf { B } ) ^ { 3 } = \mathbf { P D P } ^ { - 1 }\).
CAIE FP1 2018 November Q6
Standard +0.8
6 The curve \(C\) has equation $$y = \frac { x ^ { 2 } + a x - 1 } { x + 1 }$$ where \(a\) is constant and \(a > 1\).
  1. Find the equations of the asymptotes of \(C\).
  2. Show that \(C\) intersects the \(x\)-axis twice.
  3. Justifying your answer, find the number of stationary points on \(C\).
  4. Sketch \(C\), stating the coordinates of its point of intersection with the \(y\)-axis.
CAIE FP1 2018 November Q7
Challenging +1.8
7
  1. Use de Moivre's theorem to show that $$\sin 8 \theta = 8 \sin \theta \cos \theta \left( 1 - 10 \sin ^ { 2 } \theta + 24 \sin ^ { 4 } \theta - 16 \sin ^ { 6 } \theta \right) .$$
  2. Use the equation \(\frac { \sin 8 \theta } { \sin 2 \theta } = 0\) to find the roots of $$16 x ^ { 6 } - 24 x ^ { 4 } + 10 x ^ { 2 } - 1 = 0$$ in the form \(\sin k \pi\), where \(k\) is rational.
CAIE FP1 2018 November Q9
5 marks Moderate -0.5
9
0 \end{array} \right) , \quad \mathbf { c } = \left( \begin{array} { l } 3
3
4 \end{array} \right) \quad \text { and } \quad \mathbf { d } = \left( \begin{array} { r } 0
- 8
3 \end{array} \right) .$$
  1. Show that \(\{ \mathbf { a } , \mathbf { b } , \mathbf { c } \}\) is a basis for \(\mathbb { R } ^ { 3 }\).
  2. Express \(\mathbf { d }\) in terms of \(\mathbf { a } , \mathbf { b }\) and \(\mathbf { c }\).\\ 2 The roots of the equation $$x ^ { 3 } + p x ^ { 2 } + q x + r = 0$$ are \(\alpha , 2 \alpha , 4 \alpha\), where \(p , q , r\) and \(\alpha\) are non-zero real constants.
  3. Show that $$2 p \alpha + q = 0$$
  4. Show that $$p ^ { 3 } r - q ^ { 3 } = 0$$ 3 The sequence of positive numbers \(u _ { 1 } , u _ { 2 } , u _ { 3 } , \ldots\) is such that \(u _ { 1 } < 3\) and, for \(n \geqslant 1\), $$u _ { n + 1 } = \frac { 4 u _ { n } + 9 } { u _ { n } + 4 }$$
  5. By considering \(3 - u _ { n + 1 }\), or otherwise, prove by mathematical induction that \(u _ { n } < 3\) for all positive integers \(n\).
  6. Show that \(u _ { n + 1 } > u _ { n }\) for \(n \geqslant 1\).\\ 4 A curve is defined parametrically by $$x = t - \frac { 1 } { 2 } \sin 2 t \quad \text { and } \quad y = \sin ^ { 2 } t$$ The arc of the curve joining the point where \(t = 0\) to the point where \(t = \pi\) is rotated through one complete revolution about the \(x\)-axis. The area of the surface generated is denoted by \(S\).
  7. Show that $$S = a \pi \int _ { 0 } ^ { \pi } \sin ^ { 3 } t \mathrm {~d} t$$ where the constant \(a\) is to be found.
  8. Using the result \(\sin 3 t = 3 \sin t - 4 \sin ^ { 3 } t\), find the exact value of \(S\).\\ 5 It is given that \(\lambda\) is an eigenvalue of the matrix \(\mathbf { A }\) with \(\mathbf { e }\) as a corresponding eigenvector, and \(\mu\) is an eigenvalue of the matrix \(\mathbf { B }\) for which \(\mathbf { e }\) is also a corresponding eigenvector.
  9. Show that \(\lambda + \mu\) is an eigenvalue of the matrix \(\mathbf { A } + \mathbf { B }\) with \(\mathbf { e }\) as a corresponding eigenvector.\\ The matrix \(\mathbf { A }\), given by $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 0 & 1
    - 1 & 2 & 3
    1 & 0 & 2 \end{array} \right)$$ has \(\left( \begin{array} { l } 1 \\ 2 \\ 1 \end{array} \right) , \left( \begin{array} { r } 1 \\ 4 \\ - 1 \end{array} \right)\) and \(\left( \begin{array} { l } 0 \\ 1 \\ 0 \end{array} \right)\) as eigenvectors.
  10. Find the corresponding eigenvalues.\\ The matrix \(\mathbf { B }\) has eigenvalues 4, 5 and 1 with corresponding eigenvectors \(\left( \begin{array} { l } 1 \\ 2 \\ 1 \end{array} \right) , \left( \begin{array} { r } 1 \\ 4 \\ - 1 \end{array} \right)\) and \(\left( \begin{array} { l } 0 \\ 1 \\ 0 \end{array} \right)\) respectively.
  11. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } + \mathbf { B } ) ^ { 3 } = \mathbf { P D P } ^ { - 1 }\).\\ 6 The curve \(C\) has equation $$y = \frac { x ^ { 2 } + a x - 1 } { x + 1 }$$ where \(a\) is constant and \(a > 1\).
  12. Find the equations of the asymptotes of \(C\).
  13. Show that \(C\) intersects the \(x\)-axis twice.
  14. Justifying your answer, find the number of stationary points on \(C\).
  15. Sketch \(C\), stating the coordinates of its point of intersection with the \(y\)-axis. 7
  16. Use de Moivre's theorem to show that $$\sin 8 \theta = 8 \sin \theta \cos \theta \left( 1 - 10 \sin ^ { 2 } \theta + 24 \sin ^ { 4 } \theta - 16 \sin ^ { 6 } \theta \right) .$$
  17. Use the equation \(\frac { \sin 8 \theta } { \sin 2 \theta } = 0\) to find the roots of $$16 x ^ { 6 } - 24 x ^ { 4 } + 10 x ^ { 2 } - 1 = 0$$ in the form \(\sin k \pi\), where \(k\) is rational.\\ 8 The plane \(\Pi _ { 1 }\) has equation $$\mathbf { r } = \left( \begin{array} { l } 5
    1
    0 \end{array} \right) + s \left( \begin{array} { r } - 4
    1
    3 \end{array} \right) + t \left( \begin{array} { l } 0
    1
    2 \end{array} \right)$$
  18. Find a cartesian equation of \(\Pi _ { 1 }\).\\ The plane \(\Pi _ { 2 }\) has equation \(3 x + y - z = 3\).
  19. Find the acute angle between \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in degrees.
  20. Find an equation of the line of intersection of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\), giving your answer in the form \(\mathbf { r } = \mathbf { a } + \lambda \mathbf { b }\). [5]\\ 9 The curve \(C\) has polar equation $$r = 5 \sqrt { } ( \cot \theta ) ,$$ where \(0.01 \leqslant \theta \leqslant \frac { 1 } { 2 } \pi\).
  21. Find the area of the finite region bounded by \(C\) and the line \(\theta = 0.01\), showing full working. Give your answer correct to 1 decimal place.
    Let \(P\) be the point on \(C\) where \(\theta = 0.01\).
  22. Find the distance of \(P\) from the initial line, giving your answer correct to 1 decimal place.
  23. Find the maximum distance of \(C\) from the initial line.
  24. Sketch \(C\).
CAIE FP1 2018 November Q10
Challenging +1.8
10
  1. Find the particular solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 10 x = 37 \sin 3 t$$ given that \(x = 3\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = 0\) when \(t = 0\).
  2. Show that, for large positive values of \(t\) and for any initial conditions, $$x \approx \sqrt { } ( 37 ) \sin ( 3 t - \phi ) ,$$ where the constant \(\phi\) is such that \(\tan \phi = 6\).
CAIE FP1 2018 November Q11 EITHER
Standard +0.8
  1. By considering \(( 2 r + 1 ) ^ { 2 } - ( 2 r - 1 ) ^ { 2 }\), use the method of differences to prove that $$\sum _ { r = 1 } ^ { n } r = \frac { 1 } { 2 } n ( n + 1 )$$
  2. By considering \(( 2 r + 1 ) ^ { 4 } - ( 2 r - 1 ) ^ { 4 }\), use the method of differences and the result given in part (i) to prove that $$\sum _ { r = 1 } ^ { n } r ^ { 3 } = \frac { 1 } { 4 } n ^ { 2 } ( n + 1 ) ^ { 2 }$$ The sums \(S\) and \(T\) are defined as follows: $$\begin{aligned} & S = 1 ^ { 3 } + 2 ^ { 3 } + 3 ^ { 3 } + 4 ^ { 3 } + \ldots + ( 2 N ) ^ { 3 } + ( 2 N + 1 ) ^ { 3 } , \\ & T = 1 ^ { 3 } + 3 ^ { 3 } + 5 ^ { 3 } + 7 ^ { 3 } + \ldots + ( 2 N - 1 ) ^ { 3 } + ( 2 N + 1 ) ^ { 3 } . \end{aligned}$$
  3. Use the result given in part (ii) to show that \(S = ( 2 N + 1 ) ^ { 2 } ( N + 1 ) ^ { 2 }\).
  4. Hence, or otherwise, find an expression in terms of \(N\) for \(T\), factorising your answer as far as possible.
  5. Deduce the value of \(\frac { S } { T }\) as \(N \rightarrow \infty\).
CAIE FP1 2018 November Q11 OR
Challenging +1.8
The curve \(C\) has equation $$x ^ { 2 } + 2 x y = y ^ { 3 } - 2$$
  1. Show that \(A ( - 1,1 )\) is the only point on \(C\) with \(x\)-coordinate equal to - 1 .
    For \(n \geqslant 1\), let \(A _ { n }\) denote the value of \(\frac { \mathrm { d } ^ { n } y } { \mathrm {~d} x ^ { n } }\) at the point \(A ( - 1,1 )\).
  2. Show that \(A _ { 1 } = 0\).
  3. Show that \(A _ { 2 } = \frac { 2 } { 5 }\).
    Let \(I _ { n } = \int _ { - 1 } ^ { 0 } x ^ { n } \frac { \mathrm {~d} ^ { n } y } { \mathrm {~d} x ^ { n } } \mathrm {~d} x\).
  4. Show that for \(n \geqslant 2\), $$I _ { n } = ( - 1 ) ^ { n + 1 } A _ { n - 1 } - n I _ { n - 1 } .$$
  5. Deduce the value of \(I _ { 3 }\) in terms of \(I _ { 1 }\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2018 November Q1
Standard +0.3
1 The roots of the cubic equation $$x ^ { 3 } - 5 x ^ { 2 } + 13 x - 4 = 0$$ are \(\alpha , \beta , \gamma\).
  1. Find the value of \(\alpha ^ { 2 } + \beta ^ { 2 } + \gamma ^ { 2 }\).
  2. Find the value of \(\alpha ^ { 3 } + \beta ^ { 3 } + \gamma ^ { 3 }\).
CAIE FP1 2018 November Q2
Standard +0.8
2 It is given that $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 3 & 1 \\ 0 & - 2 & 1 \\ 0 & 0 & 1 \end{array} \right)$$
  1. Find the eigenvalue of \(\mathbf { A }\) corresponding to the eigenvector \(\left( \begin{array} { l } 1 \\ 0 \\ 0 \end{array} \right)\).
  2. Write down the negative eigenvalue of \(\mathbf { A }\) and find a corresponding eigenvector.
  3. Find an eigenvalue and a corresponding eigenvector of the matrix \(\mathbf { A } + \mathbf { A } ^ { 6 }\).
CAIE FP1 2018 November Q3
Standard +0.8
3 The curve \(C\) has polar equation \(r = a \cos 3 \theta\), for \(- \frac { 1 } { 6 } \pi \leqslant \theta \leqslant \frac { 1 } { 6 } \pi\), where \(a\) is a positive constant.
  1. Sketch \(C\).
  2. Find the area of the region enclosed by \(C\), showing full working.
  3. Using the identity \(\cos 3 \theta \equiv 4 \cos ^ { 3 } \theta - 3 \cos \theta\), find a cartesian equation of \(C\).
CAIE FP1 2018 November Q4
Standard +0.8
4
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 2 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = 4 \sin t$$
  2. State an approximate solution for large positive values of \(t\).
CAIE FP1 2018 November Q5
Challenging +1.2
5 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 3 & 2 & 0 & 1 \\ 6 & 5 & - 1 & 3 \\ 9 & 8 & - 2 & 5 \\ - 3 & - 2 & 0 & - 1 \end{array} \right)$$
  1. Find the rank of \(\mathbf { M }\).
    Let \(K\) be the null space of T .
  2. Find a basis for \(K\).
  3. Find the general solution of $$\mathbf { M } \mathbf { x } = \left( \begin{array} { r } 2 \\ 5 \\ 8 \\ - 2 \end{array} \right) .$$
CAIE FP1 2018 November Q6
Challenging +1.2
6 It is given that \(y = \mathrm { e } ^ { x } u\), where \(u\) is a function of \(x\). The \(r\) th derivatives \(\frac { \mathrm { d } ^ { r } y } { \mathrm {~d} x ^ { r } }\) and \(\frac { \mathrm { d } ^ { r } u } { \mathrm {~d} x ^ { r } }\) are denoted by \(y ^ { ( r ) }\) and \(u ^ { ( r ) }\) respectively. Prove by mathematical induction that, for all positive integers \(n\), $$y ^ { ( n ) } = \mathrm { e } ^ { x } \left( \binom { n } { 0 } u + \binom { n } { 1 } u ^ { ( 1 ) } + \binom { n } { 2 } u ^ { ( 2 ) } + \ldots + \binom { n } { r } u ^ { ( r ) } + \ldots + \binom { n } { n } u ^ { ( n ) } \right)$$ [You may use without proof the result \(\binom { k } { r } + \binom { k } { r - 1 } = \binom { k + 1 } { r }\).]
CAIE FP1 2018 November Q8
Standard +0.8
8
- 2 \end{array} \right) .$$ 6 It is given that \(y = \mathrm { e } ^ { x } u\), where \(u\) is a function of \(x\). The \(r\) th derivatives \(\frac { \mathrm { d } ^ { r } y } { \mathrm {~d} x ^ { r } }\) and \(\frac { \mathrm { d } ^ { r } u } { \mathrm {~d} x ^ { r } }\) are denoted by \(y ^ { ( r ) }\) and \(u ^ { ( r ) }\) respectively. Prove by mathematical induction that, for all positive integers \(n\), $$y ^ { ( n ) } = \mathrm { e } ^ { x } \left( \binom { n } { 0 } u + \binom { n } { 1 } u ^ { ( 1 ) } + \binom { n } { 2 } u ^ { ( 2 ) } + \ldots + \binom { n } { r } u ^ { ( r ) } + \ldots + \binom { n } { n } u ^ { ( n ) } \right)$$ [You may use without proof the result \(\binom { k } { r } + \binom { k } { r - 1 } = \binom { k + 1 } { r }\).]\\ 7 Let $$S _ { N } = \sum _ { r = 1 } ^ { N } ( 3 r + 1 ) ( 3 r + 4 ) \quad \text { and } \quad T _ { N } = \sum _ { r = 1 } ^ { N } \frac { 1 } { ( 3 r + 1 ) ( 3 r + 4 ) } .$$
  1. Use standard results from the List of Formulae (MF10) to show that $$S _ { N } = N \left( 3 N ^ { 2 } + 12 N + 13 \right)$$
  2. Use the method of differences to show that $$T _ { N } = \frac { 1 } { 12 } - \frac { 1 } { 3 ( 3 N + 4 ) } .$$
  3. Deduce that \(\frac { S _ { N } } { T _ { N } }\) is an integer.
  4. Find \(\lim _ { N \rightarrow \infty } \frac { S _ { N } } { N ^ { 3 } T _ { N } }\).\\ 8
  5. By considering the binomial expansion of \(\left( z + \frac { 1 } { z } \right) ^ { 6 }\), where \(z = \cos \theta + i \sin \theta\), express \(\cos ^ { 6 } \theta\) in the form $$\frac { 1 } { 32 } ( p + q \cos 2 \theta + r \cos 4 \theta + s \cos 6 \theta ) ,$$ where \(p , q , r\) and \(s\) are integers to be determined.
  6. Hence find the exact value of $$\int _ { - \frac { 1 } { 2 } \pi } ^ { \frac { 1 } { 2 } \pi } \cos ^ { 6 } \left( \frac { 1 } { 2 } x \right) \mathrm { d } x$$
CAIE FP1 2018 November Q9
Challenging +1.2
9 The curve \(C\) has equation $$y = \frac { 5 x ^ { 2 } + 5 x + 1 } { x ^ { 2 } + x + 1 } .$$
  1. Find the equation of the asymptote of \(C\).
  2. Show that, for all real values of \(x , - \frac { 1 } { 3 } \leqslant y < 5\).
  3. Find the coordinates of any stationary points of \(C\).
  4. Sketch \(C\), stating the coordinates of any intersections with the \(y\)-axis.
CAIE FP1 2018 November Q10
Standard +0.8
10 The position vectors of the points \(A , B , C , D\) are $$\mathbf { i } + \mathbf { j } + 3 \mathbf { k } , \quad 3 \mathbf { i } + 4 \mathbf { j } + 5 \mathbf { k } , \quad - \mathbf { i } + 3 \mathbf { k } , \quad m \mathbf { j } + 4 \mathbf { k } ,$$ respectively, where \(m\) is a constant.
  1. Show that the lines \(A B\) and \(C D\) are parallel when \(m = \frac { 3 } { 2 }\).
  2. Given that \(m \neq \frac { 3 } { 2 }\), find the shortest distance between the lines \(A B\) and \(C D\).
  3. When \(m = 2\), find the acute angle between the planes \(A B C\) and \(A B D\), giving your answer in degrees.
CAIE FP1 2018 November Q11 EITHER
Challenging +1.2
The curve \(C\) is defined parametrically by $$x = 18 t - t ^ { 2 } \quad \text { and } \quad y = 8 t ^ { \frac { 3 } { 2 } }$$ where \(0 < t \leqslant 4\).
  1. Show that at all points of \(C\), $$\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = \frac { 3 ( 9 + t ) } { 2 t ^ { \frac { 1 } { 2 } } ( 9 - t ) ^ { 3 } }$$
  2. Show that the mean value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) with respect to \(x\) over the interval \(0 < x \leqslant 56\) is \(\frac { 3 } { 70 }\).
  3. Find the area of the surface generated when \(C\) is rotated through \(2 \pi\) radians about the \(x\)-axis, showing full working.
CAIE FP1 2018 November Q11 OR
Challenging +1.8
Let \(I _ { n } = \int _ { 1 } ^ { \sqrt { } 2 } \left( x ^ { 2 } - 1 \right) ^ { n } \mathrm {~d} x\).
  1. Show that, for \(n \geqslant 1\), $$( 2 n + 1 ) I _ { n } = \sqrt { } 2 - 2 n I _ { n - 1 } .$$
  2. Using the substitution \(x = \sec \theta\), show that $$I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \tan ^ { 2 n + 1 } \theta \sec \theta \mathrm {~d} \theta$$
  3. Deduce the exact value of $$\int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \frac { \sin ^ { 7 } \theta } { \cos ^ { 8 } \theta } \mathrm {~d} \theta$$ If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE FP1 2019 November Q1
Standard +0.8
1 The curve \(C\) has equation \(y = x ^ { a }\) for \(0 \leqslant x \leqslant 1\), where \(a\) is a positive constant. Find, in terms of \(a\), the coordinates of the centroid of the region enclosed by \(C\), the line \(x = 1\) and the \(x\)-axis.
CAIE FP1 2019 November Q2
Challenging +1.2
2 It is given that \(y = \ln ( a x + 1 )\), where \(a\) is a positive constant. Prove by mathematical induction that, for every positive integer \(n\), $$\frac { \mathrm { d } ^ { n } y } { \mathrm {~d} x ^ { n } } = ( - 1 ) ^ { n - 1 } \frac { ( n - 1 ) ! a ^ { n } } { ( a x + 1 ) ^ { n } }$$
CAIE FP1 2019 November Q3
Challenging +1.8
3 The integral \(I _ { n }\), where \(n\) is a positive integer, is defined by $$I _ { n } = \int _ { \frac { 1 } { 2 } } ^ { 1 } x ^ { - n } \sin \pi x \mathrm {~d} x$$
  1. Show that $$n ( n + 1 ) I _ { n + 2 } = 2 ^ { n + 1 } n + \pi - \pi ^ { 2 } I _ { n }$$
  2. Find \(I _ { 5 }\) in terms of \(\pi\) and \(I _ { 1 }\).