2 It is given that
$$\mathbf { A } = \left( \begin{array} { r r r }
2 & 3 & 1
0 & - 2 & 1
0 & 0 & 1
\end{array} \right)$$
- Find the eigenvalue of \(\mathbf { A }\) corresponding to the eigenvector \(\left( \begin{array} { l } 1
0
0 \end{array} \right)\). - Write down the negative eigenvalue of \(\mathbf { A }\) and find a corresponding eigenvector.
- Find an eigenvalue and a corresponding eigenvector of the matrix \(\mathbf { A } + \mathbf { A } ^ { 6 }\).