CAIE FP1 2018 November — Question 5

Exam BoardCAIE
ModuleFP1 (Further Pure Mathematics 1)
Year2018
SessionNovember
Topic3x3 Matrices

5 The linear transformation \(\mathrm { T } : \mathbb { R } ^ { 4 } \rightarrow \mathbb { R } ^ { 4 }\) is represented by the matrix \(\mathbf { M }\), where $$\mathbf { M } = \left( \begin{array} { r r r r } 3 & 2 & 0 & 1
6 & 5 & - 1 & 3
9 & 8 & - 2 & 5
- 3 & - 2 & 0 & - 1 \end{array} \right)$$
  1. Find the rank of \(\mathbf { M }\).
    Let \(K\) be the null space of T .
  2. Find a basis for \(K\).
  3. Find the general solution of $$\mathbf { M } \mathbf { x } = \left( \begin{array} { r } 2
    5
    8
    - 2 \end{array} \right) .$$