CAIE
Further Paper 4
2020
Specimen
Q4
7 marks
Standard +0.8
4 Th m b r, \(x , 6\) a certain ty sea sh ll was co ed at \(\theta\) rach ly cb en sites, each \(\mathbf { a }\) metre seq re, alg th co stlie in co ry \(A\). Th \(m \quad \mathbf { b } , y , \boldsymbol { 6 }\) th same \(\quad \mathbf { 6 }\) sea sh ll was co ed at \(\theta\) rach ly cb en sites, each \(\mathbf {} { } _ { \text {t } }\) metre sq re, alog th co stlie in co ry \(B\). Tb results are sm marised as fb lw s,w b re \(\bar { x }\) ad \(\bar { y } \mathbf { d } \mathbf { h }\) e th samp e meas \(\mathbf { 6 } x\) ad \(y\) resp ctiv ly.
$$\bar { x } = 9 \quad \Sigma ( x - \bar { x } ) ^ { 2 } = \mathbf { 3 } \quad \bar { y } = \mathbf { 4 } \quad \Sigma ( y - \bar { y } ) ^ { 2 } = \text { 日 }$$
\includegraphics[max width=\textwidth, alt={}]{0df58f9d-6700-46cc-bcf0-903e94cccc02-06_58_1667_539_239} metre,it b co stlin sirc \(\mathbf { b }\) ry \(A\) ad inc \(\mathbf { b }\) ry \(B\).
CAIE
FP1
2008
June
Q1
4 marks
Standard +0.8
1 The finite region enclosed by the line \(y = k x\), where \(k\) is a positive constant, the \(x\)-axis for \(0 \leqslant x \leqslant h\), and the line \(x = h\) is rotated through 1 complete revolution about the \(x\)-axis. Prove by integration that the centroid of the resulting cone is at a distance \(\frac { 3 } { 4 } h\) from the origin \(O\).
[0pt]
[The volume of a cone of height \(h\) and base radius \(r\) is \(\frac { 1 } { 3 } \pi r ^ { 2 } h\).]
CAIE
FP1
2008
June
Q3
6 marks
Challenging +1.2
3 Show that if \(\lambda\) is an eigenvalue of the square matrix \(\mathbf { A }\) with \(\mathbf { e }\) as a corresponding eigenvector, and \(\mu\) is an eigenvalue of the square matrix \(\mathbf { B }\) for which \(\mathbf { e }\) is also a corresponding eigenvector, then \(\lambda + \mu\) is an eigenvalue of the matrix \(\mathbf { A } + \mathbf { B }\) with \(\mathbf { e }\) as a corresponding eigenvector.
The matrix
$$\mathbf { A } = \left( \begin{array} { r r r }
3 & - 1 & 0 \\
- 4 & - 6 & - 6 \\
5 & 11 & 10
\end{array} \right)$$
has \(\left( \begin{array} { r } 1 \\ - 1 \\ 1 \end{array} \right)\) as an eigenvector. Find the corresponding eigenvalue.
The other two eigenvalues of \(\mathbf { A }\) are 1 and 2, with corresponding eigenvectors \(\left( \begin{array} { r } 1 \\ 2 \\ - 3 \end{array} \right)\) and \(\left( \begin{array} { r } 1 \\ 1 \\ - 2 \end{array} \right)\) respectively. The matrix \(\mathbf { B }\) has eigenvalues \(2,3,1\) with corresponding eigenvectors \(\left( \begin{array} { r } 1 \\ - 1 \\ 1 \end{array} \right) , \left( \begin{array} { r } 1 \\ 2 \\ - 3 \end{array} \right)\), \(\left( \begin{array} { r } 1 \\ 1 \\ - 2 \end{array} \right)\) respectively. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } + \mathbf { B } ) ^ { 4 } = \mathbf { P D P } \mathbf { P } ^ { - 1 }\).
[0pt]
[You are not required to evaluate \(\mathbf { P } ^ { - 1 }\).]