Questions — CAIE P2 (699 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE P2 2013 June Q8
8
  1. Prove the identity $$\frac { 1 } { \sin \left( x - 60 ^ { \circ } \right) + \cos \left( x - 30 ^ { \circ } \right) } \equiv \operatorname { cosec } x$$
  2. Hence solve the equation $$\frac { 2 } { \sin \left( x - 60 ^ { \circ } \right) + \cos \left( x - 30 ^ { \circ } \right) } = 3 \cot ^ { 2 } x - 2$$ for \(0 ^ { \circ } < x < 360 ^ { \circ }\).
CAIE P2 2014 June Q1
1 Solve the inequality \(| 3 x - 2 | \geqslant | x + 4 |\).
CAIE P2 2014 June Q2
2 Find the gradient of each of the following curves at the point for which \(x = 0\).
  1. \(y = 3 \sin x + \tan 2 x\)
  2. \(y = \frac { 6 } { 1 + \mathrm { e } ^ { 2 x } }\)
CAIE P2 2014 June Q3
3
  1. Find the quotient when \(6 x ^ { 4 } - x ^ { 3 } - 26 x ^ { 2 } + 4 x + 15\) is divided by ( \(x ^ { 2 } - 4\) ), and confirm that the remainder is 7 .
  2. Hence solve the equation \(6 x ^ { 4 } - x ^ { 3 } - 26 x ^ { 2 } + 4 x + 8 = 0\).
CAIE P2 2014 June Q4
4
  1. By sketching a suitable pair of graphs, show that the equation $$3 \ln x = 15 - x ^ { 3 }$$ has exactly one real root.
  2. Show by calculation that the root lies between 2.0 and 2.5.
  3. Use the iterative formula \(x _ { n + 1 } = \sqrt [ 3 ] { } \left( 15 - 3 \ln x _ { n } \right)\) to find the root correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
CAIE P2 2014 June Q6
6
  1. Show that \(\int _ { 6 } ^ { 16 } \frac { 6 } { 2 x - 7 } \mathrm {~d} x = \ln 125\).
  2. Use the trapezium rule with four intervals to find an approximation to $$\int _ { 1 } ^ { 17 } \log _ { 10 } x d x$$ giving your answer correct to 3 significant figures.
CAIE P2 2014 June Q7
7 The equation of a curve is $$2 x ^ { 2 } + 3 x y + y ^ { 2 } = 3$$
  1. Find the equation of the tangent to the curve at the point \(( 2 , - 1 )\), giving your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
  2. Show that the curve has no stationary points.
CAIE P2 2014 June Q1
1
  1. Solve the equation \(| x + 2 | = | x - 13 |\).
  2. Hence solve the equation \(\left| 3 ^ { y } + 2 \right| = \left| 3 ^ { y } - 13 \right|\), giving your answer correct to 3 significant figures.
CAIE P2 2014 June Q2
2 Solve the equation \(3 \sin 2 \theta \tan \theta = 2\) for \(0 ^ { \circ } < \theta < 180 ^ { \circ }\).
CAIE P2 2014 June Q3
3
  1. Find \(\int 4 \cos \left( \frac { 1 } { 3 } x + 2 \right) \mathrm { d } x\).
  2. Use the trapezium rule with three intervals to find an approximation to $$\int _ { 0 } ^ { 12 } \sqrt { } \left( 4 + x ^ { 2 } \right) \mathrm { d } x$$ giving your answer correct to 3 significant figures.
CAIE P2 2014 June Q4
4 The parametric equations of a curve are $$x = 2 \ln ( t + 1 ) , \quad y = 4 \mathrm { e } ^ { t }$$ Find the equation of the tangent to the curve at the point for which \(t = 0\). Give your answer in the form \(a x + b y + c = 0\), where \(a , b\) and \(c\) are integers.
CAIE P2 2014 June Q5
6 marks
5
\includegraphics[max width=\textwidth, alt={}, center]{de8af872-9f77-4787-8e66-ed199405ca25-2_583_597_1457_772} The variables \(x\) and \(y\) satisfy the equation \(y = K \left( 2 ^ { p x } \right)\), where \(K\) and \(p\) are constants. The graph of \(\ln y\) against \(x\) is a straight line passing through the points ( \(1.35,1.87\) ) and ( \(3.35,3.81\) ), as shown in the diagram. Find the values of \(K\) and \(p\) correct to 2 decimal places.
[0pt] [6]
CAIE P2 2014 June Q6
6 The polynomial \(\mathrm { p } ( x )\) is defined by $$\mathrm { p } ( x ) = x ^ { 3 } + 2 x + a$$ where \(a\) is a constant.
  1. Given that \(( x + 2 )\) is a factor of \(\mathrm { p } ( x )\), find the value of \(a\).
  2. When \(a\) has this value, find the quotient when \(\mathrm { p } ( x )\) is divided by ( \(x + 2\) ) and hence show that the equation \(\mathrm { p } ( x ) = 0\) has exactly one real root.
CAIE P2 2014 June Q7
7 It is given that \(\int _ { 0 } ^ { a } \left( \frac { 1 } { 2 } \mathrm { e } ^ { 3 x } + x ^ { 2 } \right) \mathrm { d } x = 10\), where \(a\) is a positive constant.
  1. Show that \(a = \frac { 1 } { 3 } \ln \left( 61 - 2 a ^ { 3 } \right)\).
  2. Show by calculation that the value of \(a\) lies between 1.0 and 1.5.
  3. Use an iterative formula, based on the equation in part (i), to find the value of \(a\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
CAIE P2 2014 June Q8
8
\includegraphics[max width=\textwidth, alt={}, center]{de8af872-9f77-4787-8e66-ed199405ca25-3_581_650_1272_744} The diagram shows the curve $$y = \tan x \cos 2 x , \text { for } 0 \leqslant x < \frac { 1 } { 2 } \pi$$ and its maximum point \(M\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 4 \cos ^ { 2 } x - \sec ^ { 2 } x - 2\).
  2. Hence find the \(x\)-coordinate of \(M\), giving your answer correct to 2 decimal places.
CAIE P2 2014 June Q5
6 marks
5
\includegraphics[max width=\textwidth, alt={}, center]{22ba6cc7-7375-434e-9eaa-d536684dd727-2_583_597_1457_772} The variables \(x\) and \(y\) satisfy the equation \(y = K \left( 2 ^ { p x } \right)\), where \(K\) and \(p\) are constants. The graph of \(\ln y\) against \(x\) is a straight line passing through the points ( \(1.35,1.87\) ) and ( \(3.35,3.81\) ), as shown in the diagram. Find the values of \(K\) and \(p\) correct to 2 decimal places.
[0pt] [6]
CAIE P2 2014 June Q8
8
\includegraphics[max width=\textwidth, alt={}, center]{22ba6cc7-7375-434e-9eaa-d536684dd727-3_581_650_1272_744} The diagram shows the curve $$y = \tan x \cos 2 x , \text { for } 0 \leqslant x < \frac { 1 } { 2 } \pi$$ and its maximum point \(M\).
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = 4 \cos ^ { 2 } x - \sec ^ { 2 } x - 2\).
  2. Hence find the \(x\)-coordinate of \(M\), giving your answer correct to 2 decimal places.
CAIE P2 2015 June Q1
1
  1. Solve the equation \(| 3 x + 4 | = | 3 x - 11 |\).
  2. Hence, using logarithms, solve the equation \(\left| 3 \times 2 ^ { y } + 4 \right| = \left| 3 \times 2 ^ { y } - 11 \right|\), giving the answer correct to 3 significant figures.
CAIE P2 2015 June Q2
2
\includegraphics[max width=\textwidth, alt={}, center]{595e38f4-c52e-4509-8b16-f08e30dec96b-2_456_716_529_712} The variables \(x\) and \(y\) satisfy the equation $$y = A \mathrm { e } ^ { p ( x - 1 ) } ,$$ where \(A\) and \(p\) are constants. The graph of \(\ln y\) against \(x\) is a straight line passing through the points \(( 2,1.60 )\) and \(( 5,2.92 )\), as shown in the diagram. Find the values of \(A\) and \(p\) correct to 2 significant figures.
CAIE P2 2015 June Q3
3 The equation of a curve is $$y = 6 \sin x - 2 \cos 2 x$$ Find the equation of the tangent to the curve at the point \(\left( \frac { 1 } { 6 } \pi , 2 \right)\). Give the answer in the form \(y = m x + c\), where the values of \(m\) and \(c\) are correct to 3 significant figures.
CAIE P2 2015 June Q4
4 The polynomials \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined by $$\mathrm { f } ( x ) = x ^ { 3 } + a x ^ { 2 } + b \quad \text { and } \quad \mathrm { g } ( x ) = x ^ { 3 } + b x ^ { 2 } - a$$ where \(a\) and \(b\) are constants. It is given that ( \(x + 2\) ) is a factor of \(\mathrm { f } ( x )\). It is also given that, when \(\mathrm { g } ( x )\) is divided by \(( x + 1 )\), the remainder is - 18 .
  1. Find the values of \(a\) and \(b\).
  2. When \(a\) and \(b\) have these values, find the greatest possible value of \(\mathrm { g } ( x ) - \mathrm { f } ( x )\) as \(x\) varies.
CAIE P2 2015 June Q5
5
  1. Given that \(\int _ { 0 } ^ { a } \left( 3 \mathrm { e } ^ { \frac { 1 } { 2 } x } + 1 \right) \mathrm { d } x = 10\), show that the positive constant \(a\) satisfies the equation $$a = 2 \ln \left( \frac { 16 - a } { 6 } \right)$$
  2. Use the iterative formula \(a _ { n + 1 } = 2 \ln \left( \frac { 16 - a _ { n } } { 6 } \right)\) with \(a _ { 1 } = 2\) to find the value of \(a\) correct to 3 decimal places. Give the result of each iteration to 5 decimal places.
CAIE P2 2015 June Q6
6
  1. Prove that \(2 \operatorname { cosec } 2 \theta \tan \theta \equiv \sec ^ { 2 } \theta\).
  2. Hence
    (a) solve the equation \(2 \operatorname { cosec } 2 \theta \tan \theta = 5\) for \(0 < \theta < \pi\),
    (b) find the exact value of \(\int _ { 0 } ^ { \frac { 1 } { 6 } \pi } 2 \operatorname { cosec } 4 x \tan 2 x \mathrm {~d} x\).
CAIE P2 2015 June Q7
7 The equation of a curve is $$y ^ { 3 } + 4 x y = 16$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = - \frac { 4 y } { 3 y ^ { 2 } + 4 x }\).
  2. Show that the curve has no stationary points.
  3. Find the coordinates of the point on the curve where the tangent is parallel to the \(y\)-axis.
CAIE P2 2015 June Q1
1
  1. Use logarithms to solve the equation \(2 ^ { x } = 20 ^ { 5 }\), giving the answer correct to 3 significant figures.
  2. Hence determine the number of integers \(n\) satisfying $$20 ^ { - 5 } < 2 ^ { n } < 20 ^ { 5 }$$