CAIE P2 2015 June — Question 4

Exam BoardCAIE
ModuleP2 (Pure Mathematics 2)
Year2015
SessionJune
TopicFactor & Remainder Theorem
TypeTwo polynomials, shared factor or separate conditions

4 The polynomials \(\mathrm { f } ( x )\) and \(\mathrm { g } ( x )\) are defined by $$\mathrm { f } ( x ) = x ^ { 3 } + a x ^ { 2 } + b \quad \text { and } \quad \mathrm { g } ( x ) = x ^ { 3 } + b x ^ { 2 } - a$$ where \(a\) and \(b\) are constants. It is given that ( \(x + 2\) ) is a factor of \(\mathrm { f } ( x )\). It is also given that, when \(\mathrm { g } ( x )\) is divided by \(( x + 1 )\), the remainder is - 18 .
  1. Find the values of \(a\) and \(b\).
  2. When \(a\) and \(b\) have these values, find the greatest possible value of \(\mathrm { g } ( x ) - \mathrm { f } ( x )\) as \(x\) varies.