CAIE
Further Paper 2
2024
November
Q5
10 marks
5 Find the particular solution of the differential equation
$$6 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 5 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = t ^ { 2 } + t + 1$$
given that, when \(t = 0 , x = 12\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = - 6\).
[0pt]
[10]
\includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-10_2715_40_110_2007}
\includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-11_2726_35_97_20}
CAIE
Further Paper 2
2024
November
Q3
3 The curve \(C\) has parametric equations
$$x = \frac { 1 } { 2 } \mathrm { e } ^ { 2 t } - \frac { 1 } { 3 } t ^ { 3 } - \frac { 1 } { 2 } , \quad y = 2 \mathrm { e } ^ { t } ( t - 1 ) , \quad \text { for } 0 \leqslant t \leqslant 1 .$$
Find the exact length of \(C\) .
\includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-07_2726_35_97_20}
CAIE
Further Paper 2
2024
November
Q5
5 Find the particular solution of the differential equation
$$3 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = x ^ { 2 }$$
given that, when \(x = 0 , y = \frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
\includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-11_2726_35_97_20}
\includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-12_869_636_260_715}
\includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-12_2720_38_109_2009}
(b) Use a similar method to find, in terms of \(n\), a lower bound \(L _ { n }\) for \(\int _ { 0 } ^ { 1 } \mathrm { e } ^ { 1 - x } \mathrm {~d} x\).
(c) Show that \(\lim _ { n \rightarrow \infty } \left( U _ { n } - L _ { n } \right) = 0\).
(d) Use the Maclaurin's series for \(\mathrm { e } ^ { x }\) given in the list of formulae (MF19) to find the first three terms of the series expansion of \(z \left( 1 - \mathrm { e } ^ { - \frac { 1 } { z } } \right)\), in ascending powers of \(\frac { 1 } { z }\), and deduce the value of \(\lim _ { n \rightarrow \infty } \left( U _ { n } \right)\).
CAIE
Further Paper 2
2024
November
Q5
10 marks
5 Find the particular solution of the differential equation
$$6 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 5 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = t ^ { 2 } + t + 1$$
given that, when \(t = 0 , x = 12\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = - 6\).
[0pt]
[10]
\includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-10_2715_40_110_2007}
\includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-11_2726_35_97_20}