Questions — CAIE Further Paper 2 (186 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE Further Paper 2 2023 November Q4
4 Find the particular solution of the differential equation $$\frac { d ^ { 2 } y } { d x ^ { 2 } } + 2 \frac { d y } { d x } + 3 y = 27 x ^ { 2 }$$ given that, when \(x = 0 , y = 2\) and \(\frac { d y } { d x } = - 8\).
CAIE Further Paper 2 2023 November Q6
6
  1. Starting from the definitions of cosh and sinh in terms of exponentials, prove that $$\sinh 2 x = 2 \sinh x \cosh x$$ \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_67_1550_374_347}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_58_1569_475_328}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_58_1569_566_328}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_59_1566_657_328}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_58_1570_749_324}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_54_1570_840_324}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_63_1570_922_324}
    \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-10_67_1570_1009_324}
  2. Using the substitution \(\mathrm { u } = \sinh \mathrm { x }\), find \(\int \sinh ^ { 2 } 2 x \cosh x \mathrm {~d} x\).
  3. Find the particular solution of the differential equation $$\frac { d y } { d x } + y \tanh x = \sinh ^ { 2 } 2 x$$ given that \(y = 4\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
CAIE Further Paper 2 2023 November Q8
8
  1. State the sum of the series \(1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 }\), for \(z \neq 1\).
  2. By letting \(z = \cos \theta + i \sin \theta\), where \(\cos \theta \neq 1\), show that $$1 + \cos \theta + \cos 2 \theta + \ldots + \cos ( n - 1 ) \theta = \frac { 1 } { 2 } \left( 1 - \cos n \theta + \frac { \sin n \theta \sin \theta } { 1 - \cos \theta } \right)$$ \includegraphics[max width=\textwidth, alt={}, center]{8b6fd4fe-5ae3-4364-9e97-c67b7606a41e-15_833_785_214_680} The diagram shows the curve with equation \(\mathrm { y } = \cos \mathrm { x }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  3. By considering the sum of the areas of these rectangles, show that $$\int _ { 0 } ^ { 1 } \cos x d x < \frac { 1 } { 2 n } \left( 1 - \cos 1 + \frac { \sin 1 \sin \frac { 1 } { n } } { 1 - \cos \frac { 1 } { n } } \right)$$
  4. Use a similar method to find, in terms of \(n\), a lower bound for \(\int _ { 0 } ^ { 1 } \cos x d x\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2024 November Q1
1 Find the set of values of \(k\) for which the system of equations $$\begin{array} { r } x + 5 y + 6 z = 1
k x + 2 y + 2 z = 2
- 3 x + 4 y + 8 z = 3 \end{array}$$ has a unique solution and interpret this situation geometrically.
CAIE Further Paper 2 2024 November Q2
2 It is given that $$x = 1 + \frac { 1 } { t } \quad \text { and } \quad y = \cos ^ { - 1 } t \quad \text { for } 0 < t < 1$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { t ^ { 2 } } { \sqrt { 1 - t ^ { 2 } } }\).
    \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-05_2723_33_99_22}
  2. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - t ^ { a } \left( 1 - t ^ { 2 } \right) ^ { b } \left( 2 - t ^ { 2 } \right)\) ,where \(a\) and \(b\) are constants to be determined.
CAIE Further Paper 2 2024 November Q3
3 A curve has equation \(y = \mathrm { e } ^ { x }\) for \(\ln \frac { 4 } { 3 } \leqslant x \leqslant \ln \frac { 12 } { 5 }\). The area of the surface generated when the curve is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(A\).
  1. Use the substitution \(u = \mathrm { e } ^ { x }\) to show that $$A = 2 \pi \int _ { \frac { 4 } { 3 } } ^ { \frac { 12 } { 5 } } \sqrt { 1 + u ^ { 2 } } \mathrm {~d} u$$
  2. Use the substitution \(u = \sinh v\) to show that $$A = \pi \left( \frac { 904 } { 225 } + \ln \frac { 5 } { 3 } \right) .$$ \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-06_2716_38_109_2012}
    \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-07_2726_35_97_20}
CAIE Further Paper 2 2024 November Q4
4 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } - 11 & 1 & 8
0 & - 2 & 0
- 16 & 1 & 13 \end{array} \right)$$
  1. Show that \(\left( \begin{array} { l } 1
    1
    1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\) and state the corresponding eigenvalue.
  2. Show that the characteristic equation of \(\mathbf { A }\) is \(\lambda ^ { 3 } - 19 \lambda - 30 = 0\) and hence find the other eigenvalues of \(\mathbf { A }\).
    \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-08_2717_35_106_2015}
    \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-09_2726_33_97_22}
  3. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { - 1 }\).
CAIE Further Paper 2 2024 November Q5
10 marks
5 Find the particular solution of the differential equation $$6 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 5 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = t ^ { 2 } + t + 1$$ given that, when \(t = 0 , x = 12\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = - 6\).
[0pt] [10]
\includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-10_2715_40_110_2007}
\includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-11_2726_35_97_20}
CAIE Further Paper 2 2024 November Q6
6
\includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-12_533_1532_278_264} The diagram shows the curve with equation \(y = \left( \frac { 1 } { 2 } \right) ^ { x }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(N\) rectangles each of width \(\frac { 1 } { N }\).
  1. By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } \left( \frac { 1 } { 2 } \right) ^ { x } \mathrm {~d} x > L _ { N }\), where $$L _ { N } = \frac { 1 } { 2 N \left( 2 ^ { \frac { 1 } { N } } - 1 \right) }$$ \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-12_2717_38_109_2009}
  2. Use a similar method to find, in terms of \(N\), an upper bound \(U _ { N }\) for \(\int _ { 0 } ^ { 1 } \left( \frac { 1 } { 2 } \right) ^ { x } \mathrm {~d} x\).
  3. Find the least value of \(N\) such that \(U _ { N } - L _ { N } \leqslant 10 ^ { - 3 }\).
  4. Given that \(\int _ { 0 } ^ { 1 } \left( \frac { 1 } { 2 } \right) ^ { x } \mathrm {~d} x = \frac { 1 } { 2 \ln 2 }\) ,use the value of \(N\) found in part(c)to find upper and lower bounds for \(\ln 2\) .
CAIE Further Paper 2 2024 November Q1
1 Find the value of \(\int _ { 6 } ^ { 7 } \frac { 1 } { \sqrt { ( x - 5 ) ^ { 2 } - 1 } } \mathrm {~d} x\), giving your answer in the form \(\ln ( a + \sqrt { b } )\), where \(a\) and \(b\) are integers to be determined.
CAIE Further Paper 2 2024 November Q2
2 The curve \(C\) has equation $$4 y ^ { 2 } + 4 \ln ( x y ) = 1 .$$
  1. Show that, at the point \(\left( 2 , \frac { 1 } { 2 } \right)\) on \(C , \frac { \mathrm {~d} y } { \mathrm {~d} x } = - \frac { 1 } { 6 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-04_2718_35_107_2012}
    \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-05_2725_35_99_20}
  2. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(\left( 2 , \frac { 1 } { 2 } \right)\).
CAIE Further Paper 2 2024 November Q3
3 The curve \(C\) has parametric equations $$x = \frac { 1 } { 2 } \mathrm { e } ^ { 2 t } - \frac { 1 } { 3 } t ^ { 3 } - \frac { 1 } { 2 } , \quad y = 2 \mathrm { e } ^ { t } ( t - 1 ) , \quad \text { for } 0 \leqslant t \leqslant 1 .$$ Find the exact length of \(C\) .
\includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-07_2726_35_97_20}
CAIE Further Paper 2 2024 November Q4
4
  1. Use de Moivre's theorem to show that $$\cot 6 \theta = \frac { \cot ^ { 6 } \theta - 15 \cot ^ { 4 } \theta + 15 \cot ^ { 2 } \theta - 1 } { 6 \cot ^ { 5 } \theta - 20 \cot ^ { 3 } \theta + 6 \cot \theta } .$$ \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-08_2718_35_107_2012}
    \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-09_2723_33_99_22}
  2. Hence obtain the roots of the equation $$x ^ { 6 } - 6 x ^ { 5 } - 15 x ^ { 4 } + 20 x ^ { 3 } + 15 x ^ { 2 } - 6 x - 1 = 0$$ in the form \(\cot ( q \pi )\), where \(q\) is a rational number.
CAIE Further Paper 2 2024 November Q5
5 Find the particular solution of the differential equation $$3 \frac { \mathrm {~d} ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } + 2 \frac { \mathrm {~d} y } { \mathrm {~d} x } + y = x ^ { 2 }$$ given that, when \(x = 0 , y = \frac { \mathrm { d } y } { \mathrm {~d} x } = 0\).
\includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-11_2726_35_97_20}
\includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-12_869_636_260_715}
\includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-12_2720_38_109_2009}
(b) Use a similar method to find, in terms of \(n\), a lower bound \(L _ { n }\) for \(\int _ { 0 } ^ { 1 } \mathrm { e } ^ { 1 - x } \mathrm {~d} x\).
(c) Show that \(\lim _ { n \rightarrow \infty } \left( U _ { n } - L _ { n } \right) = 0\).
(d) Use the Maclaurin's series for \(\mathrm { e } ^ { x }\) given in the list of formulae (MF19) to find the first three terms of the series expansion of \(z \left( 1 - \mathrm { e } ^ { - \frac { 1 } { z } } \right)\), in ascending powers of \(\frac { 1 } { z }\), and deduce the value of \(\lim _ { n \rightarrow \infty } \left( U _ { n } \right)\).
CAIE Further Paper 2 2024 November Q7
7
  1. Show that \(\frac { \mathrm { d } } { \mathrm { d } x } ( \ln ( \tanh x ) ) = 2 \operatorname { cosech } 2 x\).
    \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-14_2717_35_106_2015}
    \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-15_2723_33_99_22}
  2. Find the solution of the differential equation $$\sinh 2 x \frac { \mathrm {~d} y } { \mathrm {~d} x } + 2 y = \sinh 2 x$$ for which \(y = 5\) when \(x = \ln 2\). Give your answer in an exact form.
CAIE Further Paper 2 2024 November Q8
8 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } - 2 & 0 & 0
0 & 7 & 9
4 & 1 & 7 \end{array} \right)$$
  1. Show that the characteristic equation of \(\mathbf { A }\) is \(\lambda ^ { 3 } - 12 \lambda ^ { 2 } + 12 \lambda + 80 = 0\) and find the eigenvalues of A.
    \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-16_2718_38_106_2010}
    \includegraphics[max width=\textwidth, alt={}, center]{bc601b16-c106-43a2-a2fc-676b5c836096-17_2723_33_99_22}
  2. Use the characteristic equation of \(\mathbf { A }\) to show that $$\mathbf { A } ^ { 4 } = p \mathbf { A } ^ { 2 } + q \mathbf { A } + r \mathbf { I } ,$$ where \(p , q\) and \(r\) are integers to be determined.
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( \mathbf { A } - 3 \mathbf { I } ) ^ { 4 } = \mathbf { P D P } ^ { - 1 }\) .
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2024 November Q2
2 It is given that $$x = 1 + \frac { 1 } { t } \quad \text { and } \quad y = \cos ^ { - 1 } t \quad \text { for } 0 < t < 1$$
  1. Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { t ^ { 2 } } { \sqrt { 1 - t ^ { 2 } } }\).
    \includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-05_2723_33_99_22}
  2. Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - t ^ { a } \left( 1 - t ^ { 2 } \right) ^ { b } \left( 2 - t ^ { 2 } \right)\), where \(a\) and \(b\) are constants to be determined.
CAIE Further Paper 2 2024 November Q3
3 A curve has equation \(y = \mathrm { e } ^ { x }\) for \(\ln \frac { 4 } { 3 } \leqslant x \leqslant \ln \frac { 12 } { 5 }\). The area of the surface generated when the curve is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(A\).
  1. Use the substitution \(u = \mathrm { e } ^ { x }\) to show that $$A = 2 \pi \int _ { \frac { 4 } { 3 } } ^ { \frac { 12 } { 5 } } \sqrt { 1 + u ^ { 2 } } \mathrm {~d} u$$
  2. Use the substitution \(u = \sinh v\) to show that $$A = \pi \left( \frac { 904 } { 225 } + \ln \frac { 5 } { 3 } \right) .$$ \includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-06_2716_38_109_2012}
    \includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-07_2726_35_97_20}
CAIE Further Paper 2 2024 November Q4
4 The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } - 11 & 1 & 8
0 & - 2 & 0
- 16 & 1 & 13 \end{array} \right)$$
  1. Show that \(\left( \begin{array} { l } 1
    1
    1 \end{array} \right)\) is an eigenvector of \(\mathbf { A }\) and state the corresponding eigenvalue.
  2. Show that the characteristic equation of \(\mathbf { A }\) is \(\lambda ^ { 3 } - 19 \lambda - 30 = 0\) and hence find the other eigenvalues of \(\mathbf { A }\).
    \includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-08_2715_44_110_2006}
    \includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-09_2726_33_97_22}
  3. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { - 1 }\).
CAIE Further Paper 2 2024 November Q5
10 marks
5 Find the particular solution of the differential equation $$6 \frac { \mathrm {~d} ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } - 5 \frac { \mathrm {~d} x } { \mathrm {~d} t } + x = t ^ { 2 } + t + 1$$ given that, when \(t = 0 , x = 12\) and \(\frac { \mathrm { d } x } { \mathrm {~d} t } = - 6\).
[0pt] [10]
\includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-10_2715_40_110_2007}
\includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-11_2726_35_97_20}
CAIE Further Paper 2 2024 November Q6
6
\includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-12_533_1532_278_264} The diagram shows the curve with equation \(y = \left( \frac { 1 } { 2 } \right) ^ { x }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(N\) rectangles each of width \(\frac { 1 } { N }\).
  1. By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } \left( \frac { 1 } { 2 } \right) ^ { x } \mathrm {~d} x > L _ { N }\), where $$L _ { N } = \frac { 1 } { 2 N \left( 2 ^ { \frac { 1 } { N } } - 1 \right) }$$ \includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-12_2717_38_109_2009}
  2. Use a similar method to find, in terms of \(N\), an upper bound \(U _ { N }\) for \(\int _ { 0 } ^ { 1 } \left( \frac { 1 } { 2 } \right) ^ { x } \mathrm {~d} x\).
  3. Find the least value of \(N\) such that \(U _ { N } - L _ { N } \leqslant 10 ^ { - 3 }\).
  4. Given that \(\int _ { 0 } ^ { 1 } \left( \frac { 1 } { 2 } \right) ^ { x } \mathrm {~d} x = \frac { 1 } { 2 \ln 2 }\) ,use the value of \(N\) found in part(c)to find upper and lower bounds for \(\ln 2\) .
CAIE Further Paper 2 2024 November Q8
8
  1. By considering the binomial expansion of \(\left( z + \frac { 1 } { z } \right) ^ { 7 }\), where \(z = \cos \theta + \mathrm { i } \sin \theta\), use de Moivre's theorem to show that $$\cos ^ { 7 } \theta = a \cos 7 \theta + b \cos 5 \theta + c \cos 3 \theta + d \cos \theta$$ where \(a , b , c\) and \(d\) are constants to be determined.
    Let \(I _ { n } = \int _ { 0 } ^ { \frac { 1 } { 4 } \pi } \cos ^ { n } \theta \mathrm {~d} \theta\).
  2. Show that $$n I _ { n } = 2 ^ { - \frac { 1 } { 2 } n } + ( n - 1 ) I _ { n - 2 }$$ \includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-18_2716_40_109_2009}
  3. Using the results given in parts (a) and (b), find the exact value of \(I _ { 9 }\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2020 Specimen Q1
1 Fid b g a ral sb t iord to d fferen ial eq tion $$\frac { d ^ { 2 } x } { d t ^ { 2 } } + 4 \frac { d x } { d t } + 4 x = 72 \quad t ^ { 2 }$$
CAIE Further Paper 2 2020 Specimen Q2
2 Fid \(\mathbf { b }\) ex ct le \(\mathbf { 6 } \int _ { 0 } ^ { 1 } \frac { 1 } { \sqrt { 3 + 4 x - 4 x ^ { 2 } } } \mathrm {~d} x\).
CAIE Further Paper 2 2020 Specimen Q3
3 Fid b sb utiw the id fferen ial eq tin $$x \frac { \mathrm { dy } } { \mathrm { dx } } + 3 y = \frac { \sin x } { x }$$ fo wh ch \(y = O _ { N }\) b \(\mathrm { n } x = \frac { 1 } { 2 } \pi\). Give your answer in the form \(y = \mathrm { f } ( x )\).