2 It is given that
$$x = 1 + \frac { 1 } { t } \quad \text { and } \quad y = \cos ^ { - 1 } t \quad \text { for } 0 < t < 1$$
- Show that \(\frac { \mathrm { d } y } { \mathrm {~d} x } = \frac { t ^ { 2 } } { \sqrt { 1 - t ^ { 2 } } }\).
\includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-05_2723_33_99_22} - Show that \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } } = - t ^ { a } \left( 1 - t ^ { 2 } \right) ^ { b } \left( 2 - t ^ { 2 } \right)\) ,where \(a\) and \(b\) are constants to be determined.