6
\includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-12_533_1532_278_264}
The diagram shows the curve with equation \(y = \left( \frac { 1 } { 2 } \right) ^ { x }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(N\) rectangles each of width \(\frac { 1 } { N }\).
- By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } \left( \frac { 1 } { 2 } \right) ^ { x } \mathrm {~d} x > L _ { N }\), where
$$L _ { N } = \frac { 1 } { 2 N \left( 2 ^ { \frac { 1 } { N } } - 1 \right) }$$
\includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-12_2717_38_109_2009}
- Use a similar method to find, in terms of \(N\), an upper bound \(U _ { N }\) for \(\int _ { 0 } ^ { 1 } \left( \frac { 1 } { 2 } \right) ^ { x } \mathrm {~d} x\).
- Find the least value of \(N\) such that \(U _ { N } - L _ { N } \leqslant 10 ^ { - 3 }\).
- Given that \(\int _ { 0 } ^ { 1 } \left( \frac { 1 } { 2 } \right) ^ { x } \mathrm {~d} x = \frac { 1 } { 2 \ln 2 }\) ,use the value of \(N\) found in part(c)to find upper and lower bounds for \(\ln 2\) .