3 A curve has equation \(y = \mathrm { e } ^ { x }\) for \(\ln \frac { 4 } { 3 } \leqslant x \leqslant \ln \frac { 12 } { 5 }\). The area of the surface generated when the curve is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(A\).
- Use the substitution \(u = \mathrm { e } ^ { x }\) to show that
$$A = 2 \pi \int _ { \frac { 4 } { 3 } } ^ { \frac { 12 } { 5 } } \sqrt { 1 + u ^ { 2 } } \mathrm {~d} u$$
- Use the substitution \(u = \sinh v\) to show that
$$A = \pi \left( \frac { 904 } { 225 } + \ln \frac { 5 } { 3 } \right) .$$
\includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-06_2716_38_109_2012}
\includegraphics[max width=\textwidth, alt={}, center]{4af32247-c1f9-4c1f-bdf8-bafe17aca1dc-07_2726_35_97_20}