CAIE Further Paper 2 2024 November — Question 3

Exam BoardCAIE
ModuleFurther Paper 2 (Further Paper 2)
Year2024
SessionNovember
TopicVolumes of Revolution

3 A curve has equation \(y = \mathrm { e } ^ { x }\) for \(\ln \frac { 4 } { 3 } \leqslant x \leqslant \ln \frac { 12 } { 5 }\). The area of the surface generated when the curve is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(A\).
  1. Use the substitution \(u = \mathrm { e } ^ { x }\) to show that $$A = 2 \pi \int _ { \frac { 4 } { 3 } } ^ { \frac { 12 } { 5 } } \sqrt { 1 + u ^ { 2 } } \mathrm {~d} u$$
  2. Use the substitution \(u = \sinh v\) to show that $$A = \pi \left( \frac { 904 } { 225 } + \ln \frac { 5 } { 3 } \right) .$$ \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-06_2716_38_109_2012}
    \includegraphics[max width=\textwidth, alt={}, center]{374b91df-926d-4f7f-a1d3-a54c70e8ff0e-07_2726_35_97_20}