Questions — CAIE Further Paper 2 (186 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE Further Paper 2 2022 November Q8
8
  1. Use the substitution \(u = 1 - ( \theta - 1 ) ^ { 2 }\) to find $$\int \frac { \theta - 1 } { \sqrt { 1 - ( \theta - 1 ) ^ { 2 } } } \mathrm {~d} \theta$$
  2. Find the solution of the differential equation $$\theta \frac { d y } { d \theta } - y = \theta ^ { 2 } \sin ^ { - 1 } ( \theta - 1 ) ,$$ where \(0 < \theta < 2\), given that \(y = 1\) when \(\theta = 1\). Give your answer in the form \(y = \mathrm { f } ( \theta )\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2022 November Q1
1
  1. Find the set of values of \(k\) for which the system of equations $$\begin{aligned} x + 2 y + 3 z & = 1
    k x + 4 y + 6 z & = 0
    7 x + 8 y + 9 z & = 3 \end{aligned}$$ has a unique solution.
  2. Interpret the situation geometrically in the case where the system of equations does not have a unique solution.
CAIE Further Paper 2 2022 November Q2
2 A curve has equation $$( x + 1 ) y + y ^ { 2 } = 2$$
  1. Show that \(\frac { \mathrm { dy } } { \mathrm { dx } } = - \frac { 2 } { 3 }\) at the point \(( 0 , - 2 )\).
  2. Find the value of \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\) at the point \(( 0 , - 2 )\).
CAIE Further Paper 2 2022 November Q3
3
  1. A curve has equation \(\mathrm { y } = \mathrm { e } ^ { \mathrm { x } } + \frac { 1 } { 4 } \mathrm { e } ^ { - \mathrm { x } }\), for \(0 \leqslant x \leqslant 1\). Find, in terms of \(\pi\) and e , the area of the surface generated when the curve is rotated through \(2 \pi\) radians about the \(x\)-axis.
  2. Using standard results from the list of formulae (MF19), or otherwise, find the Maclaurin's series for \(\mathrm { e } ^ { x } + \frac { 1 } { 4 } \mathrm { e } ^ { - x }\) up to and including the term in \(x ^ { 2 }\).
CAIE Further Paper 2 2022 November Q4
4 Find the solution of the differential equation $$\left( 4 t ^ { 2 } - 1 \right) \frac { d x } { d t } + 4 x = 4 t ^ { 2 } - 1$$ for which \(x = 3\) when \(t = 1\). Give your answer in the form \(\mathrm { x } = \mathrm { f } ( \mathrm { t } )\).
CAIE Further Paper 2 2022 November Q5
5
  1. Write down the fourth roots of unity.
  2. Use de Moivre's theorem to show that $$\cos 4 \theta = 8 \cos ^ { 4 } \theta - 8 \cos ^ { 2 } \theta + 1$$
  3. Hence obtain the real roots of the equation $$16 \left( 8 x ^ { 4 } - 8 x ^ { 2 } + 1 \right) ^ { 4 } - 9 = 0$$ in the form \(\cos ( q \pi )\), where \(q\) is a rational number.
CAIE Further Paper 2 2022 November Q6
6
\includegraphics[max width=\textwidth, alt={}, center]{323ac7a5-4690-441d-87fc-325a393098fa-10_585_1349_258_358} The diagram shows the curve \(\mathrm { y } = \frac { 1 } { \sqrt { \mathrm { x } ^ { 2 } + 2 \mathrm { x } } }\) for \(x > 0\), together with a set of \(( n - 1 )\) rectangles of unit
width. By considering the sum of the areas of these rectangles, show that $$\sum _ { r = 1 } ^ { n } \frac { 1 } { \sqrt { r ^ { 2 } + 2 r } } < \ln \left( n + 1 + \sqrt { n ^ { 2 } + 2 n } \right) + \frac { 1 } { 3 } \sqrt { 3 } - \ln ( 2 + \sqrt { 3 } )$$
CAIE Further Paper 2 2022 November Q7
7
  1. It is given that \(\lambda\) is an eigenvalue of the non-singular square matrix \(\mathbf { A }\), with corresponding eigenvector \(\mathbf { e }\). Show that \(\lambda ^ { - 1 }\) is an eigenvalue of \(\mathbf { A } ^ { - 1 }\) for which \(\mathbf { e }\) is a corresponding eigenvector.
    The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 2 & 0 & 3
    15 & - 4 & 3
    3 & 0 & 2 \end{array} \right)$$
  2. Given that - 1 is an eigenvalue of \(\mathbf { A }\), find a corresponding eigenvector.
  3. It is also given that \(\left( \begin{array} { l } 0
    1
    0 \end{array} \right)\) and \(\left( \begin{array} { l } 1
    2
    1 \end{array} \right)\) are eigenvectors of \(\mathbf { A }\). Find the corresponding eigenvalues.
  4. Hence find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { - 1 } = \mathbf { P D P } ^ { - 1 }\).
  5. Use the characteristic equation of \(\mathbf { A }\) to show that \(\mathbf { A } ^ { - 1 } = p \mathbf { A } ^ { 2 } + q l\), where \(p\) and \(q\) are rational numbers to be determined.
CAIE Further Paper 2 2022 November Q8
8 It is given that \(\mathrm { y } = \operatorname { coshu }\), where \(u > 0\), and $$\sqrt { \cosh ^ { 2 } u - 1 } \left( \frac { d ^ { 2 } u } { d x ^ { 2 } } + \frac { d u } { d x } \right) + \cosh u \left( \frac { d u } { d x } \right) ^ { 2 } - 2 \cosh u = 4 e ^ { - x }$$
  1. Show that $$\frac { d ^ { 2 } y } { d x ^ { 2 } } + \frac { d y } { d x } - 2 y = 4 e ^ { - x }$$
  2. Find \(u\) in terms of \(x\), given that, when \(x = 0 , u = \ln 3\) and \(\frac { d u } { d x } = 3\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2023 November Q1
1 Show that the system of equations $$\begin{aligned} 14 x - 4 y + 6 z & = 5
x + y + k z & = 3
- 21 x + 6 y - 9 z & = 14 \end{aligned}$$ where \(k\) is a constant, does not have a unique solution and interpret this situation geometrically.
CAIE Further Paper 2 2023 November Q2
2 Find the roots of the equation \(( z + 5 i ) ^ { 3 } = 4 + 4 \sqrt { 3 } i\), giving your answers in the form \(r \cos \theta + i ( r \sin \theta - 5 )\), where \(r > 0\) and \(0 < \theta < 2 \pi\).
CAIE Further Paper 2 2023 November Q3
3 Find the first three terms in the Maclaurin's series for \(\tanh ^ { - 1 } \left( \frac { 1 } { 2 } e ^ { x } \right)\) in the form \(\frac { 1 } { 2 } \ln a + b x + c x ^ { 2 }\), giving the exact values of the constants \(a , b\) and \(c\).
CAIE Further Paper 2 2023 November Q4
4 Find the particular solution of the differential equation $$\frac { d ^ { 2 } y } { d x ^ { 2 } } + 2 \frac { d y } { d x } + 3 y = 27 x ^ { 2 }$$ given that, when \(x = 0 , y = 2\) and \(\frac { \mathrm { dy } } { \mathrm { dx } } = - 8\).
CAIE Further Paper 2 2023 November Q5
5 The curve \(C\) has parametric equations $$\mathrm { x } = \frac { 2 } { 3 } \mathrm { t } ^ { \frac { 3 } { 2 } } - 2 \mathrm { t } ^ { \frac { 1 } { 2 } } , \quad \mathrm { y } = 2 \mathrm { t } + 5 , \quad \text { for } 0 < t \leqslant 3$$
  1. Find the exact length of \(C\).
  2. Find the set of values of \(t\) for which \(\frac { d ^ { 2 } y } { d x ^ { 2 } } > 0\).
CAIE Further Paper 2 2023 November Q6
6
  1. Starting from the definitions of cosh and sinh in terms of exponentials, prove that $$\sinh 2 x = 2 \sinh x \cosh x$$ \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_67_1550_374_347}
    \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_58_1569_475_328}
    \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_58_1569_566_328}
    \includegraphics[max width=\textwidth, alt={}]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_54_1566_657_328} ....................................................................................................................................................... .
    \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_54_1570_840_324}
    \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_53_1570_932_324}
    \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_53_1570_1023_324}
  2. Using the substitution \(\mathrm { u } = \sinh \mathrm { x }\), find \(\int \sinh ^ { 2 } 2 x \cosh x \mathrm { dx }\).
  3. Find the particular solution of the differential equation $$\frac { d y } { d x } + y \tanh x = \sinh ^ { 2 } 2 x$$ given that \(y = 4\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
CAIE Further Paper 2 2023 November Q7
7 The matrix \(\mathbf { A }\) is given by $$A = \left( \begin{array} { r r r } - 6 & 2 & 13
0 & - 2 & 5
0 & 0 & 8 \end{array} \right) .$$
  1. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { - 1 } = \mathbf { P D P } ^ { - 1 }\).
  2. Use the characteristic equation of \(\mathbf { A }\) to find \(\mathbf { A } ^ { - 1 }\).
CAIE Further Paper 2 2023 November Q8
8
  1. State the sum of the series \(1 + z + z ^ { 2 } + \ldots + z ^ { n - 1 }\), for \(z \neq 1\).
  2. By letting \(z = \cos \theta + i \sin \theta\), where \(\cos \theta \neq 1\), show that $$1 + \cos \theta + \cos 2 \theta + \ldots + \cos ( n - 1 ) \theta = \frac { 1 } { 2 } \left( 1 - \cos n \theta + \frac { \sin n \theta \sin \theta } { 1 - \cos \theta } \right)$$ \includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-15_833_785_214_680} The diagram shows the curve with equation \(\mathrm { y } = \cos \mathrm { x }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  3. By considering the sum of the areas of these rectangles, show that $$\int _ { 0 } ^ { 1 } \cos x d x < \frac { 1 } { 2 n } \left( 1 - \cos 1 + \frac { \sin 1 \sin \frac { 1 } { n } } { 1 - \cos \frac { 1 } { n } } \right)$$
  4. Use a similar method to find, in terms of \(n\), a lower bound for \(\int _ { 0 } ^ { 1 } \cos x d x\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2023 November Q1
1 Find the Maclaurin's series for \(\ln ( x + 2 ) + \ln \left( x ^ { 2 } + 5 \right)\) up to and including the term in \(x ^ { 2 }\).
CAIE Further Paper 2 2023 November Q2
2 It is given that $$x = 1 + \frac { 1 } { t } \quad \text { and } \quad y = t e ^ { t }$$
  1. Show that \(\frac { d y } { d x } = - e ^ { t } \left( t ^ { 3 } + t ^ { 2 } \right)\).
  2. Find \(\frac { \mathrm { d } ^ { 2 } \mathrm { y } } { \mathrm { dx } ^ { 2 } }\) in terms of \(t\).
CAIE Further Paper 2 2023 November Q3
3
  1. Use de Moivre's theorem to show that $$\cos 5 \theta = 16 \cos ^ { 5 } \theta - 20 \cos ^ { 3 } \theta + 5 \cos \theta$$
  2. Hence obtain the roots of the equation $$32 x ^ { 5 } - 40 x ^ { 3 } + 10 x - \sqrt { 2 } = 0$$ in the form \(\cos ( q \pi )\), where \(q\) is a rational number.
CAIE Further Paper 2 2023 November Q4
4 Find the solution of the differential equation $$\frac { d y } { d x } + 3 y = \sin x$$ for which \(y = 1\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).
CAIE Further Paper 2 2023 November Q5
5
\includegraphics[max width=\textwidth, alt={}, center]{1fa404d4-5e14-4356-9b6d-f176d5a9f6db-08_773_1161_278_443} The diagram shows part of the curve \(\mathrm { y } = \mathrm { xsech } ^ { 2 } \mathrm { x }\) and its maximum point \(M\).
  1. Show that, at \(M\), $$2 x \tanh x - 1 = 0$$ and verify that this equation has a root between 0.7 and 0.8 .
  2. By considering a suitable set of rectangles, use the diagram to show that
    \(\sum _ { r = 2 } ^ { n } r \operatorname { sech } ^ { 2 } r < n \tanh n + \operatorname { lnsechn } - \tanh 1 - \operatorname { lnsech } 1\).
CAIE Further Paper 2 2023 November Q6
6 The matrix \(\mathbf { P }\) is given by $$\mathbf { P } = \left( \begin{array} { r r r } 1 & - 1 & 1
0 & 2 & 1
0 & 0 & - 1 \end{array} \right) .$$
  1. State the eigenvalues of \(\mathbf { P }\).
  2. Use the characteristic equation of \(\mathbf { P }\) to find \(\mathbf { P } ^ { - 1 }\).
    The \(3 \times 3\) matrix \(\mathbf { A }\) has distinct non-zero eigenvalues \(a , \frac { 1 } { 2 } , 2\) with corresponding eigenvectors $$\left( \begin{array} { l } 1
    0
    0 \end{array} \right) , \quad \left( \begin{array} { r } - 1
    2
    0 \end{array} \right) , \quad \left( \begin{array} { r } 1
    1
    - 1 \end{array} \right) ,$$ respectively.
  3. Find \(\mathbf { A } ^ { - 1 }\) in terms of \(a\).
CAIE Further Paper 2 2023 November Q7
7
  1. Starting from the definitions of cosh and sinh in terms of exponentials, prove that $$2 \sinh ^ { 2 } A = \cosh 2 A - 1$$ \includegraphics[max width=\textwidth, alt={}, center]{1fa404d4-5e14-4356-9b6d-f176d5a9f6db-12_79_1556_358_347}
    \includegraphics[max width=\textwidth, alt={}]{1fa404d4-5e14-4356-9b6d-f176d5a9f6db-12_69_1575_466_328} ....................................................................................................................................... ........................................................................................................................................
  2. A curve has equation \(\mathrm { y } = \mathrm { x } ^ { 2 }\), for \(0 \leqslant x \leqslant \frac { 2 } { 3 }\). The area of the surface generated when the curve is rotated through \(2 \pi\) radians about the \(x\)-axis is denoted by \(S\).
    Use the substitution \(\mathrm { X } = \frac { 1 } { 2 } \operatorname { sinhu }\) to show that \(S = \frac { 1 } { 32 } \pi \left( \frac { 820 } { 81 } - \ln 3 \right)\).
CAIE Further Paper 2 2023 November Q8
8 It is given that \(\mathbf { v } = y ^ { 4 }\) and $$y ^ { 3 } \frac { d ^ { 2 } y } { d x ^ { 2 } } + 3 y ^ { 2 } \left( \frac { d y } { d x } \right) ^ { 2 } + y ^ { 3 } \frac { d y } { d x } + y ^ { 4 } = e ^ { - 2 x }$$
  1. Show that $$\frac { d ^ { 2 } v } { d x ^ { 2 } } + \frac { d v } { d x } + 4 v = 4 e ^ { - 2 x }$$
  2. Find \(y\) in terms of \(x\), given that, when \(x = 0 , y = 1\) and \(\frac { \mathrm { dy } } { \mathrm { dx } } = - \frac { 3 } { 8 }\).
    If you use the following page to complete the answer to any question, the question number must be clearly shown.