Starting from the definitions of cosh and sinh in terms of exponentials, prove that
$$\sinh 2 x = 2 \sinh x \cosh x$$
\includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_67_1550_374_347}
\includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_58_1569_475_328}
\includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_58_1569_566_328}
\includegraphics[max width=\textwidth, alt={}]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_54_1566_657_328} ....................................................................................................................................................... .
\includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_54_1570_840_324}
\includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_53_1570_932_324}
\includegraphics[max width=\textwidth, alt={}, center]{dffdf588-eb26-4d08-b1a3-a0226f5e7763-10_53_1570_1023_324}
Using the substitution \(\mathrm { u } = \sinh \mathrm { x }\), find \(\int \sinh ^ { 2 } 2 x \cosh x \mathrm { dx }\).
Find the particular solution of the differential equation
$$\frac { d y } { d x } + y \tanh x = \sinh ^ { 2 } 2 x$$
given that \(y = 4\) when \(x = 0\). Give your answer in the form \(y = f ( x )\).