A curve has equation \(\mathrm { y } = \mathrm { e } ^ { \mathrm { x } } + \frac { 1 } { 4 } \mathrm { e } ^ { - \mathrm { x } }\), for \(0 \leqslant x \leqslant 1\). Find, in terms of \(\pi\) and e , the area of the surface generated when the curve is rotated through \(2 \pi\) radians about the \(x\)-axis.
Using standard results from the list of formulae (MF19), or otherwise, find the Maclaurin's series for \(\mathrm { e } ^ { x } + \frac { 1 } { 4 } \mathrm { e } ^ { - x }\) up to and including the term in \(x ^ { 2 }\).