Questions — CAIE Further Paper 2 (186 questions)

Browse by board
AQA AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further AS Paper 1 Further AS Paper 2 Discrete Further AS Paper 2 Mechanics Further AS Paper 2 Statistics Further Paper 1 Further Paper 2 Further Paper 3 Discrete Further Paper 3 Mechanics Further Paper 3 Statistics M1 M2 M3 Paper 1 Paper 2 Paper 3 S1 S2 S3 CAIE FP1 FP2 Further Paper 1 Further Paper 2 Further Paper 3 Further Paper 4 M1 M2 P1 P2 P3 S1 S2 Edexcel AEA AS Paper 1 AS Paper 2 C1 C12 C2 C3 C34 C4 CP AS CP1 CP2 D1 D2 F1 F2 F3 FD1 FD1 AS FD2 FD2 AS FM1 FM1 AS FM2 FM2 AS FP1 FP1 AS FP2 FP2 AS FP3 FS1 FS1 AS FS2 FS2 AS M1 M2 M3 M4 M5 P1 P2 P3 P4 PMT Mocks Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 OCR AS Pure C1 C2 C3 C4 D1 D2 FD1 AS FM1 AS FP1 FP1 AS FP2 FP3 FS1 AS Further Additional Pure Further Additional Pure AS Further Discrete Further Discrete AS Further Mechanics Further Mechanics AS Further Pure Core 1 Further Pure Core 2 Further Pure Core AS Further Statistics Further Statistics AS H240/01 H240/02 H240/03 M1 M2 M3 M4 Mechanics 1 PURE Pure 1 S1 S2 S3 S4 Stats 1 OCR MEI AS Paper 1 AS Paper 2 C1 C2 C3 C4 D1 D2 FP1 FP2 FP3 Further Extra Pure Further Mechanics A AS Further Mechanics B AS Further Mechanics Major Further Mechanics Minor Further Numerical Methods Further Pure Core Further Pure Core AS Further Pure with Technology Further Statistics A AS Further Statistics B AS Further Statistics Major Further Statistics Minor M1 M2 M3 M4 Paper 1 Paper 2 Paper 3 S1 S2 S3 S4 SPS SPS ASFM SPS ASFM Mechanics SPS ASFM Pure SPS ASFM Statistics SPS FM SPS FM Mechanics SPS FM Pure SPS FM Statistics SPS SM SPS SM Mechanics SPS SM Pure SPS SM Statistics WJEC Further Unit 1 Further Unit 2 Further Unit 3 Further Unit 4 Further Unit 5 Further Unit 6 Unit 1 Unit 2 Unit 3 Unit 4
CAIE Further Paper 2 2024 June Q7
7
  1. Use the substitution \(\mathrm { u } = 1 + \mathrm { x } ^ { 2 }\) to find $$\int \frac { x } { \sqrt { 1 + x ^ { 2 } } } d x$$
  2. Find the solution of the differential equation $$x \frac { d y } { d x } - y = x ^ { 2 } \sinh ^ { - 1 } x$$ given that \(y = 1\) when \(x = 1\). Give your answer in the form \(\mathrm { y } = \mathrm { f } ( \mathrm { x } )\).
CAIE Further Paper 2 2024 June Q8
8
  1. Find the set of values of \(a\) for which the system of equations $$\begin{array} { c l } 6 x + a y & = 3
    2 x - y & = 1
    x + 5 y + 4 z & = 2 \end{array}$$ has a unique solution.
  2. Show that the system of equations in part (a) is consistent for all values of \(a\).
    The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { r r r } 6 & 0 & 0
    2 & - 1 & 0
    1 & 5 & 4 \end{array} \right)$$
  3. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(( 14 \mathbf { A } + 24 \mathbf { I } ) ^ { 2 } = \mathbf { P D P } ^ { - 1 }\).
  4. Use the characteristic equation of \(\mathbf { A }\) to show that $$( 14 \mathbf { A } + 24 \mathbf { I } ) ^ { 2 } = \mathbf { A } ^ { 4 } ( \mathbf { A } + b \mathbf { I } ) ^ { 2 }$$ where \(b\) is an integer to be determined.
    If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2024 June Q5
5
\includegraphics[max width=\textwidth, alt={}, center]{114be67d-a57f-4c36-8f1c-974a2719c1f1-08_663_1152_260_452} The diagram shows the curve with equation \(\mathrm { y } = 2 \mathrm { x } - \mathrm { x } ^ { 2 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
  1. By considering the sum of the areas of these rectangles, show that \(\int _ { 0 } ^ { 1 } \left( 2 x - x ^ { 2 } \right) d x < U _ { n }\), where $$U _ { n } = \left( 1 + \frac { 1 } { n } \right) \left( \frac { 2 } { 3 } - \frac { 1 } { 6 n } \right) .$$
  2. Use a similar method to find, in terms of \(n\), a lower bound \(L _ { n }\) for \(\int _ { 0 } ^ { 1 } \left( 2 x - x ^ { 2 } \right) d x\).
  3. Show that \(\lim _ { n \rightarrow \infty } \left( \mathrm { U } _ { n } - \mathrm { L } _ { \mathrm { n } } \right) = 0\).
CAIE Further Paper 2 2024 June Q1
1 Find the exact value of \(\int _ { 2 } ^ { \frac { 7 } { 2 } } \frac { 1 } { \sqrt { 4 x - x ^ { 2 } - 1 } } \mathrm {~d} x\).
CAIE Further Paper 2 2024 June Q2
2 The curve \(C\) has parametric equations $$x = \cosh t , \quad y = \sinh t , \quad \text { for } 0 < t \leqslant \frac { 3 } { 5 }$$ The length of \(C\) is denoted by \(s\).
  1. Show that \(s = \int _ { 0 } ^ { \frac { 3 } { 5 } } \sqrt { \cosh 2 t } \mathrm {~d} t\).
    \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-04_2714_37_143_2008}
  2. By finding the Maclaurin's series for \(\sqrt { \cosh 2 t }\) up to and including the term in \(t ^ { 2 }\) ,deduce an approximation to \(s\) .
CAIE Further Paper 2 2024 June Q3
3 The curve \(C\) has equation $$x ^ { 3 } + 2 x y + 8 y ^ { 3 } = - 12$$
  1. Show that, at the point \(( - 2 , - 1 )\) on \(C , \frac { \mathrm {~d} y } { \mathrm {~d} x } = - \frac { 1 } { 2 }\).
    \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-06_2714_37_143_2008}
  2. Find the value of \(\frac { \mathrm { d } ^ { 2 } y } { \mathrm {~d} x ^ { 2 } }\) at the point \(( - 2 , - 1 )\).
CAIE Further Paper 2 2024 June Q4
4
\includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-08_408_1433_296_315} The diagram shows the curve with equation \(y = x ^ { - 2 }\) for \(2 \leqslant x \leqslant N\) together with a set of ( \(N - 2\) ) rectangles of unit width.
  1. By considering the sum of the areas of these rectangles, show that $$\sum _ { r = 1 } ^ { N } \frac { 1 } { r ^ { 2 } } > \frac { 3 } { 2 } - \frac { 1 } { N } + \frac { 1 } { N ^ { 2 } }$$ \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-08_2718_35_141_2012}
  2. Use a similar method to find, in terms of \(N\), an upper bound for \(\sum _ { r = 1 } ^ { N } \frac { 1 } { r ^ { 2 } }\).
  3. Deduce lower and upper bounds for \(\sum _ { r = 1 } ^ { \infty } \frac { 1 } { r ^ { 2 } }\).
CAIE Further Paper 2 2024 June Q5
5
  1. Find the general solution of the differential equation $$\frac { \mathrm { d } ^ { 2 } x } { \mathrm {~d} t ^ { 2 } } + 10 \frac { \mathrm {~d} x } { \mathrm {~d} t } + 25 x = 338 \sin t$$ \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-10_2715_35_143_2012}
  2. Show that, for large positive values of \(t\) and for any initial conditions, $$x \approx R \sin ( t - \phi ) ,$$ where the constants \(R\) and \(\phi\) are to be determined.
CAIE Further Paper 2 2024 June Q6
6
  1. Show that \(\sum _ { r = 1 } ^ { n } z ^ { 4 r } = \frac { z ^ { 4 n + 2 } - z ^ { 2 } } { z ^ { 2 } - z ^ { - 2 } }\), for \(z ^ { 2 } \neq z ^ { - 2 }\).
  2. By letting \(z = \cos \theta + \mathrm { i } \sin \theta\), show that, if \(\sin 2 \theta \neq 0\), $$\sum _ { r = 1 } ^ { n } \sin ( 4 r \theta ) = \frac { \cos 2 \theta - \cos ( 4 n + 2 ) \theta } { 2 \sin 2 \theta }$$ \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-12_2718_35_143_2012}
CAIE Further Paper 2 2024 June Q7
7
  1. Show that $$\frac { \mathrm { d } } { \mathrm {~d} x } \left( \frac { x } { 2 } \sqrt { x ^ { 2 } - 9 } - \frac { 9 } { 2 } \cosh ^ { - 1 } \frac { x } { 3 } \right) = \sqrt { x ^ { 2 } - 9 }$$ \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-14_67_1579_413_324}
    \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-14_77_1581_497_322}
  2. Find the solution of the differential equation $$x \frac { \mathrm {~d} y } { \mathrm {~d} x } - y = x ^ { 2 } \sqrt { x ^ { 2 } - 9 }$$ given that \(y = 1\) when \(x = 3\). Give your answer in the form \(y = \mathrm { f } ( x )\).
    \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-14_2716_35_143_2012}
CAIE Further Paper 2 2024 June Q8
6 marks
8 The planes \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\) do not intersect and are both perpendicular to \(\mathbf { i } + 2 \mathbf { j } + 3 \mathbf { k }\). The line \(l\) intersects \(\Pi _ { 1 }\) at the point \(( 1,6,0 )\) and intersects \(\Pi _ { 2 }\) at the point \(( 3 , - 6,0 )\).
  1. Find Cartesian equations of \(\Pi _ { 1 }\) and \(\Pi _ { 2 }\).
  2. Express the vector equation of \(l\) in the form \(\left( \begin{array} { l } x
    y
    z \end{array} \right) = \mathbf { a } + \lambda \mathbf { b }\), where \(\mathbf { a }\) and \(\mathbf { b }\) are vectors to be determined, and hence show that for points on \(l , \frac { 1 } { 2 } x + \frac { 1 } { 12 } y = 1\) and \(z = 0\).
    \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-16_2715_40_144_2008}
  3. Show that the characteristic equation of \(\mathbf { A }\) is \(- \lambda ^ { 3 } + 3 \lambda ^ { 2 } + \frac { 7 } { 4 } \lambda = 0\) and hence find the eigenvalues of \(\mathbf { A }\). The matrix \(\mathbf { A }\) is given by $$\mathbf { A } = \left( \begin{array} { c c c } 1 & 2 & 3
    1 & 2 & 3
    \frac { 1 } { 2 } & \frac { 1 } { 12 } & 0 \end{array} \right)$$ \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-17_194_1711_484_212}
  4. Find a matrix \(\mathbf { P }\) and a diagonal matrix \(\mathbf { D }\) such that \(\mathbf { A } ^ { n } = \mathbf { P D P } ^ { - 1 }\), where \(n\) is a positive integer. [6]
    \includegraphics[max width=\textwidth, alt={}]{27485e4a-cd34-43e3-aa92-767820a9f6f9-18_65_1581_335_322} ........................................................................................................................................
    \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-18_72_1579_511_324}
    \includegraphics[max width=\textwidth, alt={}, center]{27485e4a-cd34-43e3-aa92-767820a9f6f9-18_2718_35_144_2012} If you use the following page to complete the answer to any question, the question number must be clearly shown.
CAIE Further Paper 2 2020 November Q1
1
  1. By differentiating \(\mathrm { e } ^ { - x ^ { 2 } }\), find the Maclaurin's series for \(\mathrm { e } ^ { - x ^ { 2 } }\) up to and including the term in \(x ^ { 2 }\).
  2. Deduce an approximation to \(\int _ { 0 } ^ { \frac { 1 } { 5 } } \mathrm { e } ^ { - x ^ { 2 } } \mathrm {~d} x\), giving your answer as a rational fraction in its lowest terms.
CAIE Further Paper 2 2020 November Q2
2 The variables \(x\) and \(y\) are related by the differential equation $$9 \frac { d ^ { 2 } y } { d x ^ { 2 } } + 6 \frac { d y } { d x } + y = 3 x ^ { 2 } + 30 x$$
  1. Find the general solution for \(y\) in terms of \(x\).
  2. State an approximate solution for large positive values of \(x\).
CAIE Further Paper 2 2020 November Q3
3
  1. Show that the system of equations $$\begin{array} { r } x - 2 y - 4 z = 1
    x - 2 y + k z = 1
    - x + 2 y + 2 z = 1 \end{array}$$ where \(k\) is a constant, does not have a unique solution.
  2. Given that \(k = - 4\), show that the system of equations in part (a) is consistent. Interpret this situation geometrically.
  3. Given instead that \(k = - 2\), show that the system of equations in part (a) is inconsistent. Interpret this situation geometrically.
  4. For the case where \(k \neq - 2\) and \(k \neq - 4\), show that the system of equations in part (a) is inconsistent. Interpret this situation geometrically.
    \includegraphics[max width=\textwidth, alt={}, center]{7da7fa35-1b97-4708-a1a2-cba9e35c8bf0-06_894_841_260_612} The diagram shows the curve with equation \(\mathrm { y } = 1 - \mathrm { x } ^ { 3 }\) for \(0 \leqslant x \leqslant 1\), together with a set of \(n\) rectangles of width \(\frac { 1 } { n }\).
CAIE Further Paper 2 2020 November Q5
5 It is given that $$x = \sinh ^ { - 1 } t , \quad y = \cos ^ { - 1 } t$$ where \(- 1 < t < 1\).
  1. By differentiating \(\cos y\) with respect to \(t\), show that \(\frac { d y } { d t } = - \frac { 1 } { \sqrt { 1 - t ^ { 2 } } }\).
  2. Find \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\) in terms of \(t\), simplifying your answer.
CAIE Further Paper 2 2020 November Q6
6
  1. Use de Moivre's theorem to show that \(\sin ^ { 4 } \theta = \frac { 1 } { 8 } ( \cos 4 \theta - 4 \cos 2 \theta + 3 )\).
  2. Find the solution of the differential equation $$\frac { \mathrm { d } y } { \mathrm {~d} \theta } + y \cot \theta = \sin ^ { 3 } \theta$$ for which \(y = 0\) when \(\theta = \frac { 1 } { 2 } \pi\).
CAIE Further Paper 2 2020 November Q7
7 The matrix \(\mathbf { P }\) is given by $$\mathbf { P } = \left( \begin{array} { r r r } 1 & 4 & 2
0 & - 1 & 1
0 & 0 & 2 \end{array} \right) .$$
  1. State the eigenvalues of \(\mathbf { P }\).
  2. Use the characteristic equation of \(\mathbf { P }\) to find \(\mathbf { P } ^ { - 1 }\).
    The \(3 \times 3\) matrix \(\mathbf { A }\) has distinct eigenvalues \(b , - 1,1\) with corresponding eigenvectors $$\left( \begin{array} { l } 1
    0
    0 \end{array} \right) , \quad \left( \begin{array} { r } 4
    - 1
    0 \end{array} \right) , \quad \left( \begin{array} { l } 2
    1
    2 \end{array} \right)$$ respectively.
  3. Find \(\mathbf { A }\) in terms of b.
CAIE Further Paper 2 2020 November Q8
8
  1. Sketch the graph of \(\mathrm { y } = \operatorname { coth } \mathrm { x }\) for \(x > 0\) and state the equations of the asymptotes.
  2. Starting from the definitions of coth and cosech in terms of exponentials, prove that $$\operatorname { coth } ^ { 2 } x - \operatorname { cosech } ^ { 2 } x = 1$$ The curve \(C\) has equation \(\mathrm { y } = \ln \operatorname { coth } \left( \frac { 1 } { 2 } \mathrm { x } \right)\) for \(x > 0\).
  3. Show that \(\frac { \mathrm { dy } } { \mathrm { dx } } = - \operatorname { cosechx }\).
  4. It is given that the arc length of \(C\) from \(\mathrm { x } = \mathrm { a }\) to \(\mathrm { x } = 2 \mathrm { a }\) is \(\ln 4\), where \(a\) is a positive constant. Show that \(\cosh a = 2\) and find, in logarithmic form, the exact value of \(a\).
    If you use the following lined page to complete the answer(s) to any question(s), the question number(s) must be clearly shown.
CAIE Further Paper 2 2020 November Q1
1 Find the Maclaurin's series for \(\tan \left( x + \frac { 1 } { 4 } \pi \right)\) up to and including the term in \(x ^ { 2 }\).
CAIE Further Paper 2 2020 November Q2
2 A curve has equation \(\mathrm { y } = \cosh \mathrm { x }\), for \(0 \leqslant x \leqslant \frac { 1 } { 2 }\).
Find, in terms of \(\pi\) and e, the area of the surface generated when the curve is rotated through \(2 \pi\) radians about the \(x\)-axis.
CAIE Further Paper 2 2020 November Q3
3 Find all the roots of the equation \(( w + 1 ) ^ { 6 } = 1\), giving your answers in the form \(\mathrm { x } + \mathrm { iy }\) where \(x\) and \(y\) are real and exact.
CAIE Further Paper 2 2020 November Q4
4 Find the solution of the differential equation $$x \frac { d y } { d x } + 2 y = e ^ { x }$$ for which \(y = 3\) when \(x = 1\). Give your answer in the form \(y = f ( x )\).
CAIE Further Paper 2 2020 November Q5
5 The curve \(C\) has equation $$y ^ { 2 } + ( x y + 1 ) ^ { 2 } = 5$$
  1. Show that, at the point \(( 1,1 )\) on \(C , \frac { \mathrm { dy } } { \mathrm { dx } } = - \frac { 2 } { 3 }\).
  2. Find the value of \(\frac { d ^ { 2 } y } { d x ^ { 2 } }\) at the point \(( 1,1 )\).
CAIE Further Paper 2 2020 November Q6
6 Find the particular solution of the differential equation $$\frac { d ^ { 2 } x } { d t ^ { 2 } } + 8 \frac { d x } { d t } + 15 x = 102 \cos 3 t$$ given that, when \(t = 0 , x = 1\) and \(\frac { \mathrm { dx } } { \mathrm { dt } } = 0\).
CAIE Further Paper 2 2020 November Q7
7
  1. Show that \(\sum _ { r = 1 } ^ { n } z ^ { 2 r } = \frac { z ^ { 2 n + 1 } - z } { z - z ^ { - 1 } }\), for \(z \neq 0,1 , - 1\).
  2. By letting \(z = \cos \theta + i \sin \theta\), show that, if \(\sin \theta \neq 0\), $$1 + 2 \sum _ { r = 1 } ^ { n } \cos ( 2 r \theta ) = \frac { \sin ( 2 n + 1 ) \theta } { \sin \theta }$$